PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of non-imaging Fresnel lens prototyping with different manufacturing methods for solar energy application

Treść / Zawartość
Identyfikatory
ISBN
10.30464/10.30464/jmee.2021.5.2.113
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Non-imaging Fresnel lenses have been playing an important role in improving the efficiency of the solar energy systems. Many researchers have been developing novel designs of Fresnel lenses to enhance the concentrator performance. To bring the complex design of a Fresnel lens from a conceptual theory to a real-life application while maintaining its efficiency, it is critical to find the optimum manufacturing method that achieves the best quality fabrication at low cost in the lab scale. This work will systematically investigate four advanced manufacturing methods for their lens-making capabilities, including pressure casting, hot embossing, 3D printing, and CNC machining. Six Fresnel lenses were fabricated by the four methods, which were tested in the lab by a solar simulator and a solar cell to demonstrate their performances. The CNC machining provides the best quality lab-scale Fresnel lens that enhances the solar cell efficiency by 118.3%. 3D printing and hot embossing methods are also promising for the fabrication of good performance lenses – increasing the solar cell efficiency by 40-70%. However, the 3D printed lens has the issue of material degradation on the long term. Although the pressure casting is the easiest manufacturing method, the performance of fabricated lens was the lowest.
Rocznik
Strony
113--122
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
  • Department of Mechanical Engineering, University of North Texas, USA
  • Department of Mechanical Engineering, University of North Texas, USA
  • Applied Science Private University, Amman, Jordan
  • Al Hussein Technical University, Amman, Jordan
autor
  • Faculty of Mechanical Engineering, Department of Mechanical Engineering, University of North Texas, 3940 North Elm Street, Denton, Texas 76207, USA
Bibliografia
  • 1. Chaves J. (2016). Introduction to Nonimaging Optics. 2nd edition. CRC Press, Taylor & Francis Group, Boca Raton, Florida, USA.
  • 2. Xie W.T., Dai Y.J., Wang R.Z., Sumathy K. (2011). Concentrated solar energy applications using Fresnel lenses: A review. Renewable and Sustainable Energy Reviews, Vol. 15, No. 6, pp. 2588–2606.
  • 3. Akisawa A., Sato T., Miyazaki T., Kashiwagi T., Hiramatsu M. (2007). High concentration non-imaging Fresnel lens design with flat upper surface. In: Proceedings Volume 6649, High and Low Concentration for Solar Electric Applications II, 66490F, San Diego, California, USA.
  • 4. Qandil H., Wang S., Zhao W. (2019). Application-based design of the Fresnel-lens solar concentrator. Renewables: Wind, Water, and Solar, Vol. 6, 3.
  • 5. Zhuang Z., Yu F. (2014). Optimization design of hybrid Fresnel-based concentrator for generating uniformity irradiance with the broad solar spectrum. Optics & Laser Technology, Vol. 60, pp. 27–33.
  • 6. Verma S., Verma A., Kumar V., Gangil B. (2021). Concentrated photovoltaic thermal systems using Fresnel lenses – A review. Materials Today: Proceedings, Vol. 44, No. 6, pp. 4256-4260.
  • 7. Leutz R., Suzuki A., Akisawa A., Kashiwagi T. (1999). Design of a nonimaging Fresnel lens for solar concentrators. Solar Energy, Vol. 65, No. 6, pp. 379–387.
  • 8. Qandil H., Wang S., Zhao W. (2019). Optimizing the Fresnel-Lens solar-concentrator design for tracking error mitigation in thermal applications, using a statistical algorithm. Applied Solar Energy, Vol. 55, pp. 106–112.
  • 9. Kang S. (2004). Replication technology for micro/nano optical components. Japanese Journal of Applied Physics, Vol. 43, No. 8S, pp. 5706–5716.
  • 10. Tosello G., Hansen H.N., Gasparin S., Albajez J.A., Esmoris J.I. (2012). Surface wear of TiN coated nickel tool during the injection moulding of polymer micro Fresnel lenses. CIRP Annals – Manufacturing Technology, Vol. 61, No. 1, pp. 535–538.
  • 11. Sortino M., Totis G., Kuljanic E. (2014). Comparison of injection molding technologies for the production of micro-optical devices. Procedia Engineering, Vol. 69, pp. 1296–1305.
  • 12. Lin C.-M. and Hsieh H.-K. (2017). Processing optimization of Fresnel lenses manufacturing in the injection molding considering birefringence effect. Microsystem Technologies, Vol. 23, pp. 5689–5695.
  • 13. Loaldi D., Calaon M., Quagliotti D., Parenti P., Annoni M., Tosello G. (2018). Tolerance verification of precision injection moulded Fresnel lenses. Procedia CIRP, Vol. 75, pp. 137–142.
  • 14. Loaldi D., Quagliotti D., Calaon M., Parenti P., Annoni M. and Tosello G. (2018). Manufacturing signatures of injection molding and injection compression molding for micro-structured polymer Fresnel lens production. Micromachines, Vol. 9, No. 12, 653.
  • 15. Lu B.-R., Li J.-X., Guo H.-B., Gao C., Huq E., Qu X.-P., Chen Y., Liu R. (2011). Dielectric Fresnel zone plates on optical fibers for micro-focusing applications. Microelectronic Engineering, Vol. 88, No. 8, pp. 2650-2652.
  • 16. Pham T.T., Vu N.H. and Shin S. (2019). Novel design of primary optical elements based on a linear Fresnel lens for concentrator photovoltaic technology. Energies, Vol. 12, No. 7, 1209.
  • 17. Shrotri A., Beyer M., Stübbe O. (2020). Manufacturing and analyzing of cost-efficient Fresnel lenses using stereolithography. In: Proceedings Volume 11349, 3D Printed Optics and Additive Photonic Manufacturing II, 113490N, SPIE Photonics Europe, Online Only.
  • 18. Tan N.Y.J., Neo D.W.K., Zhang X., Liu K., Kumar A.S. (2021). Ultra-precision direct diamond shaping of functional micro features. Journal of Manufacturing Processes, Vol. 64, pp. 209-223.
  • 19. Kujawa I., Kasztelanic R., Waluk P., Stępień R., Haraśny K., Pysz D., Klimczak M., Buczyński R. (2013). Fresnel lens fabrication for MidIR optics and fiber optic technique by using hot embossing process. In: Proceedings Volume 8698, Optical Fibers and Their Applications 2012, 869804, Krasnobrod, Poland.
  • 20. Cirino G.A., Granado R.M., Mohammed-Brahim T. and Jasinevicius R.G. (2017). Assessment of replication fidelity of optical microstructures by hot embossing. The International Journal of Advanced Manufacturing Technology, Vol. 88, pp. 303–316.
  • 21. Hot Embossing. MNX, MEMS & Nanotechnology Exchange. Available online: https://www.mems-exchange.org/catalog/hot_embossing/ (accessed on 11 October 2021).
  • 22. I-Polymer – Typical Properties of Acrylic PMMA. Available online: https://www.ipolymer.com/pdf/Acrylic.pdf (accessed on 11 October 2021).
  • 24. MASTERBOND – Optically Clear Polymer Adhesives. Available online: https://www.masterbond.com/properties/optically-clear-polymer-adhesives?matchtype=b&network=g&device=c&adposition=&keyword=optically%20clear%20adhesives&gclid=CjwKCAjwoc_8BRAcEiwAzJevtQ0VK7mrvG0G6r6lcG7_SolLvTaJJigS0GdFa2bzlczRBFlS5Ji8hhoCInEQAvD_BwE (accessed on 11 October 2021).
  • 26. Zhang J., Yu C., Wang L., Li Y., Ren Y. and Shum K. (2014). Energy barrier at the N719-dye/CsSnI3 interface for photogenerated holes in dye-sensitized solar cells. Scientific Reports, Vol. 4, 6954.
  • 27. Honsberg C.B. and Bowden S.G. (2019). Chapter 4 – Solar Cell Operation. In: Photovoltaics Education Website. Available online: https://www.pveducation.org/ (accessed on 11 October 2021).
Uwagi
PL
Błędna numeracja w bibliografii.
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c0a52fd9-00d3-4308-90f5-98012e16ded7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.