PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The studies of low-cycle fatigue behavior of high manganese TWIP steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article, explores the fatigue performance of a high-manganese TWIP steel under low-cycle fatigue conditions. The researchers aimed to address a gap in the existing literature by systematically analysing the role of mechanical twinning in the fatigue resistance of TWIP steel under different strain regimes. Fatigue tests were conducted in three modes: oscillating strain (tension-compression), positive-only strain and negative-only strain. These tests were performed at various strain amplitudes ranging from 0.6% to 1.2%. Their results revealed pronounced asymmetry in fatigue behaviour. The steel exhibited optimal performance under compressive (negative) strain and suboptimal performance under tensile (positive) strain, indicating greater sensitivity to tension during cyclic loading. At lower strain amplitudes, the material exhibited extended stabilisation with minimal damage accumulation. At higher strain levels, cyclic hardening was observed, particularly under oscillating and positive strain conditions. Manson–Coffin analysis showed that strength properties dominated fatigue life under oscillating loading, whereas plastic deformation played a more significant role under unidirectional strain modes. Fractographic analysis confirmed the material’s high ductility, revealing classic ductile failure features such as dimples and striations across all test conditions. Microstructural observations revealed that twinning occurred uniformly at lower strains but became more localised and intense near fracture zones at higher strains. These areas also exhibited increased hardness, linking localised twinning activity to material strengthening during cyclic deformation.
Twórcy
  • Silesian University of Technology, ul. Akademicka 2A, 44-100 Gliwice, Poland
  • Łukasiewicz Research Network, Institute of Non Ferrous Metals, ul. Sowińskiego 5, 44-100 Gliwice, Poland
Bibliografia
  • 1. Chen S., Rana R., Haldar A., Ray R.K., Current state of Fe-Mn-Al-C low density steels, Prog. Mater. Sci. 89 (2017) 345e391. https://doi.org/10.1016/j.pmatsci.2017.05.002.
  • 2. De Cooman B.C., Estrin Y., Kim S.K. Twinning-induced plasticity (TWIP) steels. Acta Mater 2018; 142: 283–362. https://doi.org/10.1016/j.actamat.2017.06.046.
  • 3. Chung K., Ahn K., Yoo D.-H., Chung K.-H., Seo M.-H., Park S.-H. Formability of TWIP (twinning induced plasticity) automotive sheets. Int J Plast 2011; 27(1): 52–81. https://doi.org/10.1016/j.ijplas.2010.03.006.
  • 4. Grassel O., Krüger L., Frommeyer G., Meyer L.W. High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development - properties - application. Int J Plast 2000; 16(10–11): 1391–409. https://doi.org/10.1016/S0749-6419(00)00015-2.
  • 5. Jabłońska, M.B., Effect of the conversion of the plastic deformation work to heat on the behaviour of TWIP steels: a review. Archiv. Civ. Mech. Eng. 2023; 23: 135. https://doi.org/10.1007/s43452-023-00656-0.
  • 6. Hwang S.W., Ji J.H., Park K.T., Effects of Al addition on high strain rate deformation of fully austenitic high Mn steels, Mater. Sci. Eng. 2011; A(528): 7267–7275. https://doi.org/10.1016/j.msea.2011.06.020.
  • 7. Roa J.J., Fargas G., Calvo J., Jimenez-Pique E., Mateo A., Plastic deformation and damage induced by fatigue in TWIP steels, Mater. Sci. Eng. A 2015; 628: 410e418. https://doi.org/10.1016/j.msea.2015.01.043.
  • 8. Feng D., Li Y., Song S., Liu Q., Bai Q., Ren F., Shangguan F., Influences of silicon on the work hardening behavior and hot deformation behavior of Fe–25 wt% Mn–(Si, Al) TWIP steel, J. Alloys Compd. 2015; 618: 768e775. https://doi.org/10.1016/j.jallcom.2014.08.239.
  • 9. Jung I.C., Cho L., De Cooman B.C., In situ observation of the influence of Al on deformation-induced twinning in TWIP steel, ISIJ Int. 2015; 55: 870e876. https://doi.org/10.2355/isijinternational.55.870.
  • 10. Park K.T., Jin K.G., Han S.H., Hwang S.W., Choi K., Lee C.S., Stacking fault energy and plastic deformation of fully austenitic high manganese steels: effect of Al addition, Mater. Sci. Eng. 2010; 527: 3651e3661. https://doi.org/10.1016/j.msea.2010.02.058.
  • 11. Luo Z.C., Liu R.D., Wang X., Huang M.X. The effect of deformation twins on the quasicleavage crack propagation in twinning-induced plasticity steels. Acta Mater. 2018; 150: 59–68. https://doi.org/10.1016/j.actamat.2018.03.004.
  • 12. Hamada A.S., Karjalainen L.P., Puustinen J., Fatigue behavior of high-Mn TWIP steels, Mater. Sci. Eng. 2009; 517: 68e77. https://doi.org/10.1016/j.msea.2009.03.039.
  • 13. Hamada A.S., Karjalainen L.P., Ferraiuolo A., Gil Sevillano J., De Las Cuevas F., Pratolongo G., Reis M., Fatigue behavior of four high-Mn twinning induced plasticity effect steels, Metall. Mater. Trans. A 2010; 41: 1102e1108. https://doi.org/10.1007/s11661-010-0193-7.
  • 14. Niendorf T., Lotze C., Canadinc D., Frehn A., Maier H.J., The role of monotonic pre-deformation on the fatigue performance of a high-manganese austenitic TWIP steel, Mater. Sci. Eng. 2009; 499: 518e524. https://doi.org/10.1016/j.msea.2008.09.033.
  • 15. Seo W., Jeong D., Sung H., Kim S., Tensile and high cycle fatigue behaviors of high-Mn steels at 298 and 110 K, Mater. Character. 2017; 124: 65e72. https://doi.org/10.1016/j.matchar.2016.12.001.
  • 16. Cornette D., Cugy P., Hildenbrand A., Bouzekri M., Lovato G. Aciers à très haute résistance FeMn TWIP pour pièces de sécurité dans la construction automobile. Rev Metall Cah D’Informations Tech. 2005; 102: 905–18. https://doi.org/10.1051/metal:2005151.
  • 17. Fleck N.A., Kang K.J., Ashby M.F. Overview no. 112. The cyclic properties of engineering materials. Acta Metall Mater. 1994; 42: 365–81. https://doi.org/10.1016/0956-7151(94)90493-6.
  • 18. Karjalainen L.P., Hamada A., Misra R.D.K., Porter D.A. Some aspects of the cyclic behavior of twinning-induced plasticity steels. Scr Mater 2012; 66(12): 1034–9. https://doi.org/10.1016/j.scriptamat.2011.12.008.
  • 19. Gui L.M., Jin X.C., Li H.T., Zhang M. High cycle fatigue performances of advanced high strength steel CP800. Adv Mater Res 2014; 238–41. https://doi.org/10.4028/www.scientific.net/AMR.989-994.238.
  • 20. Lara A., Picas I., Casellas D. Effect of the cutting process on the fatigue behaviour of press hardened and high strength dual phase steels. J Mater Process Technol 2013; 213(11): 1908–19. https://doi.org/10.1016/j.jmatprotec.2013.05.003.
  • 21. Parareda S., Casellas D., Frometa D., Martínez M., Lara A., Barrero A., et al. Fatigue resistance of press hardened 22MnB5 steels. Int J Fatigue 2020; 130: 105262. https://doi.org/10.1016/j.ijfatigue.2019.105262.
  • 22. Junak G., Marek A., Paduchowicz M., Impact of temperature on low-cycle fatigue characteristics of the HR6W alloy. Materials 2021; 14: 26741. https://doi.org/10.3390/ma14226741.
  • 23. Okrajni J., Wacławiak K., Junak G., Twardawa M., Stress–strain behavior and fatigue of high-temperature component made of P92 steel in a coal-fired power boiler. Energies 2024; 1996–1073. https://doi.org/10.3390/en17122870.
  • 24. Yin T.W., Shen Y.F., Xue W.Y., Jia N., Zuo L., Ce addition enabling superior strength and ductility combination of a low-carbon low-manganese transformation-induced plasticity steel, Mater. Sci. Eng. 2022; A 849. https://doi.org/10.1016/j.msea.2022.143474.
  • 25. Lesiuk G., Rozumek D. Fracture Mechanics and Fatigue Damage of Materials and Structures. Materials 2023; 16: 4171. https://doi.org/10.3390/ma16114171.
  • 26. Jabłońska M., Śmiglewicz A. Analysis of substructure of high-Mn steels in the context of dominant stress mechanism, 8th International Conference on Diffusion in Solids Liquids, Defect and Diffusion Forum 2013; 334–335: 177–181. https://doi.org/10.4028/www.scientific.net/DDF.334-335.177.
  • 27. Śmiglewicz A., Jabłońska M., The effect of strain rate on the impact strength of the high-Mn steel, Metalurgija 2015; 54(4): 631–634.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c0a29a8b-ef24-4a5a-bf2a-d1788096c08e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.