PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal properties and morphology changes in degradation process of poly(L-lactide-co-glycolide) matrices with risperidone

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Determining thermal properties and morphology seems to be useful in the analysis of release and degradation processes form polymeric materials. Risperidone is available in the formulation of a long-acting injection based on poly(D,L-lactide-co-glycolide). Currently, alternative solutions are also offered, i.e., nano- and microparticles or implants, including copolymers of lactide and glycolide. The effect of risperidone content on the properties of poly(L-lactide-co-glycolide) matrices was determined. The study also involved an assessment of the changes during degradation. Risperidone free matrices and the matrices with risperidone were obtained by solvent casting. Thermal characteristics were tested by means of differential scanning calorimetry, and the morphology was evaluated using a scanning electron microscope. Risperidone did not change significantly semi-crystalline structure of poly(L-lactide-co-glycolide) matrices. The decrease in crystallization temperature and glass transition temperature during degradation was observed. Many pores and their deformation, the widening of pore area, cracks and slits because of degradation were observed. The analysis of thermal properties and morphology allowed us to explain degradation process. Matrices exhibited stable process of degradation, which may be advantageous for development of prolonged risperidone release systems.
Rocznik
Strony
11--20
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
autor
  • Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
  • School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland, Chair and Department of Biopharmacy, Jedności 8, Sosnowiec, Poland
  • Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
  • School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland, Chair and Department of Biopharmacy, Jedności 8, Sosnowiec, Poland
autor
  • Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
autor
  • Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
autor
  • Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
autor
  • Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
autor
  • Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
  • Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
Bibliografia
  • [1] GUTIERREZ R., LEE P.I., HUANG M.L., WOESTENBORGHS R., Risperidone: effects of formulations on oral bioavailability, Pharmacotherapy, 1997, 17(3), 599–605.
  • [2] BAI Y.M., CHEN T.T., WU B., HUNG C.H., LIN W.K., HU T.M., LIN C.Y., CHOU P., A comparative efficacy and safety study of long-acting risperidone injection and risperidone oral tablets among hospitalized patients: 12-week randomized, single-blind study, Pharmacopsychiatry, 2006, 39(4), 135–141.
  • [3] CITROME L., A systematic review of meta-analyses of the efficacy of oral atypical antipsychotics for the treatment of adult patients with schizophrenia, Expert Opin. Pharmacother, 2012, 13(11), 1545–1573.
  • [4] HUANG M., SHEN-TU J., HU X., CHEN J., LIU J., WU L., Comparative fasting bioavailability of dispersible and conventional tablets of risperidone: a single-dose, randomized-sequence, open-label, two-period crossover study in healthy male Chinese volunteers, Clin. Ther., 2012, 34(6), 1432–1439.
  • [5] Food and Drug Administration, 2003, http://www.accessdata. fda.gov/drugsatfda_docs/label/2010/021346_s31_s35_s38_ s39lbl.pdf. Accessed 1 August 2014.
  • [6] RABIN C., LIANG Y., EHRLICHMAN R.S., BUDHIAN A., METZGER K.L., MAJEWSKI-TIEDEKEN C., WINEY K.I., SIEGEL S.J., In vitro and in vivo demonstration of risperidone implants in mice, Schizophr. Res., 2008, 98(1–3), 66–78.
  • [7] MUTHU M.S., RAWAT M.K., MISHRA A., SINGH S., PLGA nanoparticle formulations of risperidone: preparation and neuropharmacological evaluation, Nanomedicine, 2009, 5(3), 323–333.
  • [8] SU Z.X., SHI Y.N., TENG L.S., LI X., WANG L.X., MENG Q.F., TENG L.R., LI Y.X., Biodegradable poly(D, L-lactide-coglycolide) (PLGA) microspheres for sustained release of risperidone: Zero-order release formulation, Pharm. Dev. Technol., 2011, 16(4), 377–384.
  • [9] ALBERTSSON A.Ch. (ed.), Degradable Aliphatic Polyesters, Springer-Verlag, 2002.
  • [10] SWARBRICK S. (ed.), Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 2006.
  • [11] BARTKOWIAK-JOWSA M., BĘDZIŃSKI R., KOZŁOWSKA A., FILIPIAK J., PEZOWICZ C., Mechanical, rheological, fatigue, and degradation behavior of PLLA, PGLA, PDGLA as materials for vascular implants, Meccanica, 2013, 48(3), 721–731.
  • [12] STĘPAK B., ANTOŃCZAK A.J., BARTKOWIAK-JOWSA B., FILIPIAK J., PEZOWICZ C., ABRAMSKI K.M., Fabrication of a polymer-based biodegradable stent using a CO2 laser, Arch. Civ. Mech. Eng., 2014, 14(2), 317–326.
  • [13] WANG J., WANG B.M., SCHWENDEMAN S.P., Characterization of the initial burst release of a model peptide from poly(D,L-lactide-co-glycolide) microspheres, J. Control Release, 2002, 82(2–3), 289–307.
  • [14] DANGI R., HURKAT P., JAIN A., SHILPI S., JAIN A., GULBAKE A., JAIN S.K., Targeting liver cancer via ASGP receptor using 5-FU-loaded surface-modified PLGA nanoparticles, J. Microencapsul, 2014, 31(5), 479–487.
  • [15] ZHANG H., XU J., Enhanced oral bioavailability of salmeterol by loaded PLGA microspheres: preparation, in vitro, and in vivo evaluation, Drug Deliv., 2014, 14, 1–6.
  • [16] HUA J., GEBAROWSKA K., DOBRZYŃSKI P., KASPERCZYK J., WEI J., LI S., Influence of chain microstructure on the hydrolytic degradation of copolymers from 1,3-trimethylene carbonate and L-lactide, J. Polym. Sci. A Polym. Chem., 2009, 47(15), 3869–3879.
  • [17] JELONEK K., KASPERCZYK J., LI S., DOBRZYNSKI P., JARZĄBEK B., Controlled poly(l-lactide-co-trimethylene carbonate) delivery system of cyclosporine A and rapamycinethe effect of copolymer chain microstructure on drug release rate, Int. J. Pharm., 2009, 414(1–2), 203–209.
  • [18] FREDENBERG S., WAHLGREN M., RESLOW M., AXELSSON A., The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems – a review, Int. J. Pharm., 2011, 415(1–2), 34–52.
  • [19] NIKKOLA L., VIITANEN P., ASHAMMAKHI N., Temporal control of drug release from biodegradable polymer: multicomponent diclofenac sodium releasing PLGA 80/20 rod, J. Biomed. Mater Res. Part B Appl. Biomater., 2009, 89(2), 518–526.
  • [20] KLOSE D., SIEPMANN F., WILLART J.F., DESCAMPS M., SIEPMANN J., Drug release from PLGA-based microparticles: effects of the "microparticle: bulk fluid" ratio, Int. J. Pharm., 2010, 383(1–2), 123–131.
  • [21] TUREK A., JELONEK K., WÓJCIK A., DZIERŻEWICZ Z., KASPERCZYK J., DOBRZYŃSKI P., MARCINKOWSKI A., TRZEBICKA B., Surface properties of poly(L-lactide-coglycolide) matrices with risperidone and their changes after two weeks of degradation, Eng. Biomat, 2010, 13(96–98), 117–120.
  • [22] YAMAGUCHI Y., TAKENAGA M., KITAGAWA A., OGAWA Y., MIZUSHIMA Y., IGARASHI R., Insulin-loaded biodegradable PLGA microcapsules: initial burst release controlled by hydrophilic additives, J. Control. Release, 2002, 81(3), 235–249.
  • [23] DOBRZYŃSKI P., BERO M., KASPERCZYK J., Sposób wytwarzania bioresorbowalnych polimerów, PL 191846 B1, 2000.
  • [24] DOBRZYŃSKI P., KASPERCZYK J., JANECZEK H., BERO M., Synthesis of biodegradable copolymers with the use of low toxic zirconium compounds. 1: Copolymerization of glycolide with L-lactide initiated by Zr(Acac)4, Macromolecules, 2001, 34(15), 5090–5098.
  • [25] YANG Y.Y., CHIA H.H., CHUNG T.S., Effect of preparation temperature on the characteristics and release profiles of PLGA microspheres containing protein fabricated by doubleemulsion solvent extraction/evaporation method, J. Control Release, 2000, 69(1), 81–96.
  • [26] DOBRZYŃSKI P., LI S., KASPERCZYK J., BERO M., GASC F., VERT M., Structure-property relationships of copolymers obtained by ring-opening polymerization of glycolide and epsilon-caprolactone. Part 1. Synthesis and characterization, Biomacromolecules, 2005, 6(1), 1483–1488.
  • [27] LI S., DOBRZYŃSKI P., KASPERCZYK J., BERO M., BRAUD C., VERT M., Structure-property relationships of copolymers obtained by ring-opening polymerization of glycolide and epsilon-caprolactone. Part 2. Influence of composition and chain microstructure on the hydrolytic degradation, Biomacromolecules, 2005, 6(1), 1489–1497.
  • [28] THANKI P.N., DELLACHERIE E., SIX J.L., Surface characteristics of PLA and PLGA films, Appl. Surf. Sci., 2006, 253(5), 2758–2764.
  • [29] RAHMAN Z., ZIDAN A.S., KHAN M.A., Non-destructive methods of characterization of risperidone solid lipid nanoparticles, Eur. J. Pharm. Biopharm., 2010, 76(1), 127–137.
  • [30] SILVA A.C., GONZÁLEZ-MIRA E., GARCÍA M.L., EGEA M.A., FONSECA J., SILVA R., SANTOS, D., SOUTO E.B., FERREIRA D., Preparation, characterization and biocompatibility studies on risperidone-loaded solid lipid nanoparticles (SLN): high pressure homogenization versus ultrasound, Colloids Surf B Biointerfaces, 2011, 86(1), 158–165.
  • [31] SIEGEL S.J., KAHN J.B., METZGER K., WINEY K.I., WERNER K., DAN N., Effect of drug type on the degradation rate of PLGA matrices, Eur. J. Pharm. Biopharm., 2006, 64(3), 287–293.
  • [32] RYDZ J., WOLNA-STYPKA K., MUSIOŁ M., SZELUGA U., JANECZEK H., KOWALCZUK M., Further evidences of polylactide degradation in paraffin and selected protic media. A thermal analysis of the eroded PLA films, Polym. Degrad. Stab., 2009, 98(8), 1450–1457.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c09c8647-6dea-4150-9f4d-42c144cc7efa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.