PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Aspekty nanomateriałów w zastosowaniach cywilnych i militarnych. Cz. 1. Pochodzenie, charakterystyka i metody otrzymywania

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Aspects of nanomaterials for civil and military applications Part 1. The origin, characterization and methods of obtaining
Języki publikacji
PL
Abstrakty
PL
W pracy przedstawiono podstawowe aspekty materiałów o wysokim stopniu zdyspergowania w skali nanometrycznej obejmujące pochodzenie, budowę i klasyfikację, wykazywane właściwości oraz ich metody wytwarzania. Osobliwe właściwości i zjawiska wykazywane przez te materiały sprawiły, że w ostatnich dwóch dekadach jesteśmy świadkami rewolucji materiałowej. Świadczy o tym zarówno i istotny wzrost intensywności prowadzonych prac badawczych jak i rosnący zakres możliwości praktycznego stosowania osiągnięć nanotechnologii we wszystkich dziedzinach naszego życia.
EN
At work are fundamental aspects of materials with a high degree of nanometric scale has dispersed, including their origin, construction and classification, reported properties and manufacturing methods. Peculiar properties and phenonena reported by these materials have made in the last two decades, we are witnessing a revolution in materials. These shows both a significant increase in the intensity of the carried out research work and the growing range of practical applications of nanotechnology advances in all areas of our lives.
Rocznik
Tom
Strony
5--17
Opis fizyczny
Bibliogr. 82 poz., rys., tab.
Twórcy
  • Uniwersytet Ekonomiczny, Wydział Towaroznawstwa, Al. Niepodległości 10, 61-875 Poznań, PL
autor
  • Instytut Metali Nieżelaznych w Gliwicach, Oddział w Poznaniu, ul. Forteczna 12, 61-362 Poznań, PL
autor
  • Wojskowa Akademia Techniczna, ul. Gen. W. Urbanowicza 2, 00-908 Warszawa, PL
autor
  • Uniwersytet im. A. Mickiewicza w Poznaniu, Wydział Chemii, ul. Umultowska 89b, 61-614 Poznań, PL
Bibliografia
  • [1] Feynman R.P. 1959. There’s plenty of room at the bottom. An invitation to enter a new of physics. American Physical Society, California Institute of Technology Engineering and Science.
  • [2] Nanonauka i nanotechnologia: Plan działań dla Europy na lata 2005-2009. Komunikat Komisji UE z dnia 7.06.2005.
  • [3] Cademartiri L., Ozin G.A. 2011. Nanochemia podstawowa. Koncepcje. Warszawa : PWN.
  • [4] Jurczyk M. 2001. Nanomateriały. Poznań : Wydawnictwo Politechniki Poznańskiej.
  • [5] Zarko V., Gromow A. 2016. Energetic nanomaterials. Characterization and Application. 1st ed. Elsevier.
  • [6] Huber D.L. 2005. Synthesis, Properties, and Applications of Iron Nanoparticles. Small 1 (5): 482-501.
  • [7] Ramsden J.J. 2012. Applied Nanotechnology. 1st ed., Elsevier.
  • [8] Kelsal R.W., Hamley I.W., Geoghegan M. 2008. Nanotechnologie. Warszawa : PWN.
  • [9] Taniguchi N. 1996. Nanotechnology. Integral Processing Systems for Ultra Precision and Ultra-fine Products. Oxford Science Publishing, Oxford.
  • [10] Manalis A.G. 2007. Recent advances in nanotechnology. J. Materials Processing Technology 18 (1-3):52-58.
  • [11] Ramsden J.J. 2012. Nanotechnology for military applications, Nanotechnol. Perception 8: 99-131.
  • [12] Zalecenia Komisji UE L 75, Nr 1043/20011 z dnia 18.10.2011 r. dotyczące definicji nano-materiału.
  • [13] Henglein A. 1987. Q-Particles: Size Quantization Effects in Colloidal Semiconductors. Prog. Colloid Polym. Sci. 73: 1-3.
  • [14] Batlle X., Labarta A. 2002. Finite-Size Effects in Fine Particles: Magnetic and Transport Properties. J. Phys. D Appl. Phys. 35: R15-R42.
  • [15] McGovern C. 2010. Commoditization of nanomaterials. Nanotechnol. Perceptions 6: 155-178.
  • [16] Rogachev A.S., Mukasyan A.C. 2010. Combustion of Heterogeneous Nanostructured System (review). Combust. Expl., Shock Waves 46 (3): 243-266.
  • [17] Teipel U. 2005. Energetic Materials. Particle Processing and Characterization. Wiley-VCH, Weinheim.
  • [18] Rossi C., Estève A., Vashishta P. 2010. Nanoscale Energetic Materials. J. Phys. Chem. Solids 71 (2): 57-58.
  • [19] Jayaraman K., Anand K.V, Chakravarthy S.R, Sarathi R. 2009. Effect of Nano-Aluminium in Plateau-Burning and Catalyzed Composite Solid Propellant Combustion. Combustion and Flame 156 (8): 1662-1673.
  • [20] Dave P., Chaturvedi S. 2010. Nanocatalyst for Composite Solid Rocket Propellants. Lambert Academy Publishing, Germany.
  • [21] Zhigach A.N., Leipunsky I.O., Kudrov B.V. 2011. Aluminized HNIW-Based Nano-composite-Synthesis and Explosive Properties. Proc. of European 2011 Seminar, Reims, France, May, Session S11b.
  • [22] Klapötke T.M. 2008. Chemistry of High-Energy Materials. Berlin : Walter de Gruyter.
  • [23] Bréchignac C., Houdy P., Lahmani M., (Edts.). 2011. Nanomaterials and Nanochemistry. Berlin-Heidelberg : Springer-Verlag.
  • [24] Wang H., Jian G., Egan G.C., Zachariah M.R. 2014. Asseambly and reactive properties of Al/CuO based nanothermic microparticles. Combustion and Flame 161 (8): 2203-2208.
  • [25] Gartner J. 2005. Intelligent Machines. Military Reloads with Nanotech. MIT Technology Review 2005. https://www.technologyreview.com/s/403624/Military-Reloads-with-Nanotech/ [strona dostępna 15.12.2017].
  • [26] Drexler E. 1986. Engines of Creation. The Comming Era of Nananotechnology, Doubleday, Garden City.
  • [27] Drexler E. 1992. Nanosystems: Molecular Machinery, Manufacturing and Computation. New York : J. Willey & Sons.
  • [28] The AMPIAC Newsletter. Rome-New York : AMPTIACc&DoD.
  • [29] Synteza, struktura, interakcja biomolekuł z nanomateriałami, modelowanie struktury i procesów z udziałem nano-materiałów. II-ga Konferencja Nanobiomateriałów – teoria i praktyka Toruń, 29-31.05.2017.
  • [30] Klabunde K.J., (Ed.). 2001. Nanoscale Materials in Chemistry. New York : J. Wiley & Sons.
  • [31] Gęsiński A., Dziubak C., Rutkowski R. 2003. Szkło i Ceramika. Pigmenty ceramiczne - historia i teraźniejszość 54 (6): 15-22.
  • [32] Vollath D. 2008. Nanomaterials: An Introduction to Synthesis, Properties and Applications. Weinheim : Wiley-VCH Verlag.
  • [33] Rao C.N.R, Müller A., Cheetham A.K. 2007. Nanomaterials Chemistry: Recent Developments and New Directions. Weinheim : Wiley-VCH Verlag.
  • [34] Tang Z., Sheng P. 2008. Nanoscale Phenomena, Basic Science to Device Applications. Berlin-Heidelberg : Springer Verlag.
  • [35] vanLoon G.W., Duffy S.J. 2009. Chemia środowiska: perspektywa globalna. Warszawa : Wyd. PWN.
  • [36] Bolewski A., Manecki A. 1993. Mineralogia szczegółowa. Warszawa : Polska Agencja Ekologiczna.
  • [37] Hunt L.B. 1976. The true story of purple of Cassius. Gold Bulletin 9 (4): 134-139.
  • [38] Elsner J. 2013. The Lycurgus Cup. In: New Light on Old Glass: Recent Research on Byzantine Mosaics and Glass. British Museum Research, Publication No. 179, British Museum Press, Chapter12.
  • [39] Seinfeld J.H., Pandis S.N. 1997. Atmospheric chemistry and Physics. New York : J. Wiley-Interscience publications.
  • [40] Astruc D., Lu F., Aranzaes J.R. 2005. Nanoparticles as Recyclable Catalysts: The Frontier between Homogeneous and Heterogeneous Catalysis. Angew. Chem. Int. Ed. 44: 7852.
  • [41] Altavilla C., Ciliberto E. 2010. Inorganic Nanoparticles: Synthesis, Applications and Perspectives. Boca Raton-London : CRC, pp. 547-558.
  • [42] Cao G. 2004. Nanostructures and Nanomaterials: Synthesis, Properties and Applications. London : Imperial College Press.
  • [43] Bréchignac C., Houdy P., Lahmani M., (Edts.). 2008. Nanomaterials and Nanochemistry. Berlin-Heidelberg : Springer-Verlag.
  • [44] Knauth P., Schoonman J., (Edts.). 2004. Nanostructured Materials. Selected Synthesis Methods, Properties and Application. Kluwer.
  • [45] Hosono H., Mishima Y., Takezoe H., MacKenzie K.J.D., (Edts.). 2006. Nanomaterials: Research Towards Applications. Lipson : Elsevier.
  • [46] Geckeler K.E., Nishide H., Advanced Nanomaterials. Verlag-Weinheim : J. Wiley-VCH 2010.
  • [47] Psara’s A.P., Langford H.D., (Edts.). 1987. Advancing Materials Research. Washington : National Acad. Press.
  • [48] Geim A.K., Novoselov K.S. 2007. The Rise of Graphene. Nature Materials 6: 183-191.
  • [49] Matthas L., Pulci O., Bechstedt F. 2013. Massive Dirac quasiparticles in the optical absorbance of Graphene silicene, germane and tinene. J. Phys. Condensed Matter. 25 (39): 395-305.
  • [50] Roome N.J., Carrey J.D. 2014. Beyond Graphene: Stable Elements Monolayers of Silicen and Germanene. ACS Appl. Mater. Interf. 6 (10): 7743-7750.
  • [51] Jing L., Cink M., Wignarajah K., Fisher J. 2004. Partridge H., Impregnation of Catalytic Metal in Single-Walled Carbon Nanotubes for Toxic Gas Conversion in Life Support System. SAE-01-2492.
  • [52] Boscovic B.O. 2007. Carbon nanotubes and nanofibres. Nanotechnol. Perceptions 3: 141-158.
  • [53] Haque M.H. 2006. Application of the month: Carbon Nanotubes Sensors, Nano Sprint. Carbon Nanotubes 6 Grenoble.
  • [54] Ciałkowski M., Giersig M., Iskra A., Kałużny J., Babiak M. 2009. The carbon nanotubes as a washcoat for oxidizing catalytic converter in exhaust gas after treatment system. 13th International Conference Computer Systems Aided Science, Industry and Transport “TRANSCOMP 2009”.
  • [55] Kroto H.W., Heath J.R., O’Brien S.C., Curl R.F., Smalley R.E. 1985. C60: Buckminister Fullerene. Nature 315 (14): 162-172.
  • [56] Heng L., Wang Y., Zhang L., Du S., Wu R., Li L., Zhang Y., Li G., Zhou H., Hofer W.A., Gao M.J. 2013. Buckled Silicene Formation and Ir 111. Nano Letter 13 (2): 685-690.
  • [57] Cheng Z-P., Yang Yi, Li Feng-Sheng, Pan Zhen-Hua, 2008. Synthesis Characterization of Aluminum Particles Coated with Uniform Silica Shell. Trans. Nonferrous Metals Soc. China 1: 378-382.
  • [58] Cao B., Zang. S., Hu Z. Zan Y., Zang H. 2015. Tinene: a two dimendional Dirac material with 72 meV band gap. Phys. Chem. Chem Phys. 17 (9): 1263-1268.
  • [59] Berner M.K., Zarko V.E., Talawar M.B. 2013. Nanoparticles of energetic materials: Synthesis and properties. Combustion, Explosion and Shock Waves 49 (6): 625-647.
  • [60] Henglein A. 1987. Q-Particles: Size Quantization Effects in Colloidal Semiconductors. Progr. Colloid. Polym. Sci. 73: 1-3.
  • [61] Alivisatos A.P., 1996. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science 271: 933-937.
  • [62] Tvrdy K., Kamat P.V. 2009. Substrate Driven Photochemistry of CdSe Quantum Dot Film: Charge Injection and Irreversible Transformations on Oxide Surfaces. J. Phys. Chem. 113: 3765-3772.
  • [63] Yu H., Li J., Loomis R. A., Wang L.W., Buhro W.E. 2003. Two- versus Three-Dimensional Quantum Confinement in Indium Phosphide Wires and Dots. Nat. Mater. 2 517-520.
  • [64] Fojtik A. 1986. Quantum State of Small Semiconductor Clusters - “exciton”, Radiation Chemistry of “Q-State” Particles. Int. J. Radiat. Appl. Instrum. C Radiat. Phys. Chem. 2: 463-465.
  • [65] Lu W., Lieber C.M. 2007. Nanoelectronics from the Bottom Up. Nat. Mater. 6: 841-850.
  • [66] Park M.V.D.Z., Neigh A.M., Vermeulen J.P., Fonteyne L.J.J., Verharen H.W., Briede J.J. Loveren H., Jong W.H. 2011. The Effect of Particle Size on the Cytotoxicity, Inflammation. Developmental Toxicity and Genotoxicity of Silver Nanoparticles Biomaterials 32: 9810-9817.
  • [67] Gagné F., Maysinger D., André C., Blaise C. 2008. Cytotoxicity of Aged Cadmium-Telluride Quantum Dots to Rainbow Trout Hepatocytes. Nanotoxicology 2: 113-120.
  • [68] Kirchner C., Liedl T., Kudera S., Pellegrino T., Muñoz J. A., Gaub H.E., Stölzle S., Fertig N., Parak W.J. 2005. Cytotoxicity of Colloidal CdSe and CdSe/ZnS Nanoparticles. Nano Lett. 5: 331-338.
  • [69] Paduch J., Kuziak R., Krztoń H., Pośpiech J. 2007. Otrzymywanie i właściwości nanomateriałów na osnowie żelaza. Archiwum Technologii Maszyn i Automatyzacji 27 (1): 143-152.
  • [70] Batlle X., Labarta A. 2002. Finite-Size Effects in Fine Particles: Magnetic and Transport Properties. J. Phys. D Appl. Phys. 35: R15-R42.
  • [71] Biegunski-Pike. M. 2005. Nanotechnologia w medycynie i farmacji, cz.2. Lek w Polsce 15: 908-103.
  • [72] Shahverdi A.R., Fakhimi A., Shahverdi H.R., Minaian S. 2007. Synthesis and Effect of Silver Nanoparticles, on the Antybacterial Activity of Different Antibiotics Against Staphylococus Aureus an Escherichia coli, Nanomedicine. Nanotechnology 3 (2): 168-171.
  • [73] Edwards S.A. 2005. Nanomedical technology: Financial, legal,, clinical, ethical and social challenges to implementation, nanofanrication towards biomedical applications. Technical Biomedical Applications, Tools Applications an Impact 391-414.
  • [74] Nagano K., Abe Y., Kamada H. 2011. Effect of Surface Properties of Silica Non Their Cytotoxicity and Cellular Distribution in Murine Macrophages. Nanoscale Res. Lett. 6: 93-98.
  • [75] Shenhar R., Rotello V.M. 2003. Nanoparticles: Scaffolds and Building Blocks. Acc. Chem. Res. 36: 549-561.
  • [76] Yang Y., Lee J., Lee S., Liu C-H., Zhang Z. Lu W. 2013. Heterosystems Resistive Memory. Nano Lett. 13: 2908-2915.
  • [77] Gash A.E., Simpson R.L,. Satcher J.H (Jr.). 2005. Direct Preparation of Nanostructured Energetic Materials Using Sol-Gel Methods. Defence Appl. Nanomater. Symp. Ser. 891: 198-210.
  • [78] Edelstein A.S., Cammaratra R.C., (Edts.). 1998. Nanomaterials: Synthesis, Properties and Applications. London : Taylor & Francis.
  • [79] Lu W. 2013. Memrisiors: Going Active. Nat. Mat. 12: 92-94.
  • [80] Kohler M., Ffritzsche W.E. 2007. Nanotechnology, An Introduction to Nanostructuring Techniques. Weinheim : J. Willey-VCH-Verlag GmbH&Co. KGaA.
  • [81] Wainwright M.S. 1999. Preparation of Solid Catalysts. (Ertl G., Knözinger H., Weitkamp J., Edts.) Weinheim : J. Willey-VCH Verlag.
  • [82] Ostrikov K., Neyts E.C., Meyyappan M. 2013. Plasma Nanoscience: From Nano-Solids in Plasmas to Nano-Plasmas in Solids. Adv. Phys. 62: 113-224.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c099ce4d-be4d-4081-8abd-63cdb5d312d8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.