PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Achievements in micromagnetic techniques of steel plastic stage evaluation

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The investigation of plastic deformation and residual stress by non-destructive methods is a subject of large relevance for the industry. In this article, the difference between plastic and elastic deformation is discussed, as well as their effects on magnetic measurements, as hysteresis curve and Magnetic Barkhausen Noise. The residual stress data can be obtained with magnetic measurements and also by the hole drilling method and x-ray diffraction measurements. The residual stress level obtained by these three different methods is different, because these three techniques evaluate the sample in different depths. Effects of crystallographic texture on residual stress are also discussed. The magnetoelastic term should be included in micromagnetic methods for residual stress evaluation. It is discussed how the micromagnetic energy Hamiltonian should be expressed in order to evaluate elastic deformation. Plastic deformation can be accounted in micromagnetic models as a term that increases the coercive field in soft magnetic materials as the steels are.
Rocznik
Strony
16--55
Opis fizyczny
Bibliogr. 129 poz., tab., rys.
Twórcy
  • Federal Fluminense University, Volta Redonda RJ - Brasil
Bibliografia
  • 1. Hosford W.F.: Fundamentals of Engineering Plasticity. Cambridge University Press, New York, USA, 2013.
  • 2. Kurti N.: Selected Works of Louis Neel. 1st Edition, CRC Press, Boca Raton, USA, 1988.
  • 3. Stoner E. C.: Ferromagnetism: magnetization curves. Rep. Prog. Phys. 13 (1950) 83-183.
  • 4. Kittel C.: Physical Theory of Ferromagnetic Domains. Rev. Mod. Phys. 21 (1949) 541-583.
  • 5. Stewart K. H.: Ferromagnetic Domains, Cambridge University Press, New York, USA, 1954.
  • 6. Chikazumi S.:. Physics of Magnetism. Willey, New York. 1964.
  • 7. Chen C.W. Magnetism and Metallurgy of Soft Magnetic Materials. North Holland, Amsterdam, 1977.
  • 8. Heidenreich R.D., Shockley W.: Electron Microscope and Electron‐Diffraction Study of Slip in Metal Crystals. Journal of Applied Physics 18 (1947) 1029-1031.
  • 9. Williams H. J., Bozorth R. M., Shockley W.: Magnetic Domain Patterns on Single Crystals of Silicon Iron. Phys. Rev. 75 (1949) 155-178.
  • 10. da Silva Júnior A.F., de Campos M. F., Martins A.S.: Domain Wall Structure in Metals: a New Approach to an Old Problem. Journal of Magnetism and Magnetic Materials, 442 (2017) 236-241.
  • 11. Bloch, F.: Zur Theorie der Austauschproblems und der Remanenzerscheinung der Feromagnetika. Z. Phys. 74 (1932) 295-335.
  • 12. Moriya T., Takahashi Y.: Itinerant Electron Magnetism. Ann. Rev. Mater. Sci. 14 (1984) 1-25.
  • 13. Shull, R. D.: Clifford Glenwood Shull 1915-2001. A Biographical Memoir. Available at: http://www.nasonline.org/publications/biographical-memoirs/memoir-pdfs/shull-clifford.pdf
  • 14. Stearns, M. B.: On the Origin of Ferromagnetism in Fe, Co, and Ni. 1990. Available at: http://garfield.library.upenn.edu/classics1990/A1990DV41200001.pdf
  • 15. Aharoni, A.: Exchange energy near singular points or lines . Journal of Applied Physics 51 (1980) 3330-3332.
  • 16. Aharoni, A.: lntroduction to the Theory of Ferromagnetism. Second Edition. Oxford University press, Oxford, 1996, (reprinted 2007). p. 137.
  • 17. Brown Jr W. F.: Domains, micromagnetics, and beyond: Reminiscences and assessments. Journal of Applied Physics 49, (1978) 1937-1942.
  • 18. Chang C.R., Lee C.M., Yang J.S.: Magnetization curling reversal for an infinite hollow cylinder. Physical Review B 50 (1994) 6461-6464.
  • 19. da Silva Jr A. F., Martins A.S., de Campos M. F.: The Exchange Energy Term and the Curling Reversal Mode in Hard Magnetic Materials Manufactured by Powder Metallurgy. Materials Science Forum 899 (2017) 549-553.
  • 20. de Campos M. F.: Virtues and Weakness of Brown Micromagnetics. Materials Science Forum 802 (2014) 613-618.
  • 21. Kondorsky E.I.: On the stability of certain magnetic modes in fine ferromagnetic particles . IEEE Trans. Magn. 15 (1979) 1209-1214.
  • 22. Shtrikman S., Treves D.: The coercive force and rotational hysteresis of elongated ferromagnetic particles. J. Phys. Radium, 20 (2-3), (1959) 286-289.
  • 23. Cullity B. D., Graham C. D.: Introduction to Magnetic Materials, 2nd edition, Willey – IEEE Press, Piscataway, USA, 2008.
  • 24. Lilley, B.A.: Energies and widths of domain boundaries in ferromagnetics. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 41 (1950) 792–813.
  • 25. Kvashnin Y. O., Cardias R., Szilva A., Di Marco I., Katsnelson M. I., Lichtenstein A. I., Nordström L., Klautau A. B., Eriksson O.: Microscopic Origin of Heisenberg and Non-Heisenberg Exchange Interactions in Ferromagnetic bcc Fe Phys. Rev. Lett. 116 (2016) 217202.
  • 26. Pajda, M., Kudrnovský, J., Turek, I., Drchal, V., Bruno, P.: Ab initio calculations of exchange interactions, spin-wave stiffness constants, and Curie temperatures of Fe, Co, and Ni. Phys. Rev. B64 (2001) 174402.
  • 27. Turek I., Kudrnovský J., Drchal V., Bruno P.: Exchange interactions, spin waves, and transition temperatures in itinerant magnets. Philosophical Magazine 86 (2006) 1713-1752.
  • 28. Gilbert, T. L.: A phenomenological theory of damping in ferromagnetic materials. IEEE Trans. Mag. 40 (2004) 3443–3449.
  • 29. Sun Z. Z., Wang X. R.: Fast magnetization switching of Stoner particles: A nonlinear dynamics picture. Phys. Rev. B 71 (2005) 174430.
  • 30. Zhu B., Lo C. C. H., Lee S. J., Jiles D. C.: Micromagnetic modeling of the effects of stress on magnetic properties. J. Appl. Phys. 89 (2001) 7009-7011.
  • 31. Landau, L.D. , Lifshitz, E.M.: On the Theory of the Dispersion of Magnetic Permeability in Ferromagnetic Bodies. Phys. Z. Sowjetunion, 8 (1935) 153-164.
  • 32. Manchon A., Zhang S.: Spin Torque Effects in Magnetic Systems: Theory. in E. Y. Tsymbal, I. Zutic (eds.) - Handbook of spin transport and magnetism. CRC, Boca Raton, USA, 2012, pp. 157-178.
  • 33. Slonczewski J. C.: Current-driven excitation of magnetic multilayers, J. Magn. Magn. Mater., 159 (1996) L1–L7.
  • 34. Hurst J., Hervieux P.A., Manfredi G.: Spin current generation by ultrafast laser pulses in ferromagnetic nickel films. Physical Review B 97 (2018) 014424
  • 35. Manfredi G., Hurst J., Hervieux P.A.: Ultrafast spin current generation in ferromagnetic thin films. San Diego, California, USA (2018).
  • 36. Campbell I. A.: Frustrated Itinerant Magnetism. Brazilian Journal of Physics 25 (1995) 295- 301.
  • 37. Hathaway K.B.: Theory of Exchange Coupling in Magnetic Multilayers. in:G.A. Prinz, Bretislav Heinrich, J. Anthony C. Bland (Eds.) - Ultrathin Magnetic Structures II Measurement Techniques and Novel Magnetic Properties. Springer Berlin Heidelberg, 2005, pp. 45-194.
  • 38. de Campos M.F., Campos M. A., Landgraf F. J. G., Padovese L. R.: Anisotropy study of grain oriented steels with Magnetic Barkhausen Noise. J. Phys. Conf. Ser. 303 (2011) 012020.
  • 39. Leuning N., Steentjes S., Stöcker A., Kawalla R., Wei X., Dierdorf J., Hirt G., Roggenbuck S., Korte-Kerzel S., Weiss H.A., Volk W., Hameyer K.: Impact of the interaction of material production and mechanical processing on the magnetic properties of non-oriented electrical steel. AIP Advances 8 (2018) 047601
  • 40. Najgebauer M.: Scaling-based prediction of magnetic anisotropy in grain-oriented steels, Archives of Electrical Engineering 66 (2017) 423-432.
  • 41. Bunge, H.-J. The basic concepts of texture investigation in polycrystalline materials. Steel Res. 62 (1991) 530-541.
  • 42. de Campos, M. F.: Anisotropy of Steel Sheets and Consequence for Epstein Test: I Theory. in XVIII IMEKO WORLD CONGRESS Metrology for a Sustainable Development September, 17 – 22, 2006, Rio de Janeiro, Brazil.
  • 43. de Campos M. F., Landgraf F. J. G.: Anisotropy of Steel Sheets and Consequence for Epstein Test: II Experiment” in XVIII IMEKO WORLD CONGRESS Metrology for a Sustainable Development, September, 17 – 22, 2006, Rio de Janeiro, Brazil.
  • 44. Landgraf F.J.G., Yonamine T., Emura M., Cunha M.A.: Modelling the angular dependence of magnetic properties of afully processed non-oriented electrical steel. J. Magn. Magn. Mat. 254–255 (2003) 328–330.
  • 45. de Campos M. F., Tschiptschin A. P., Landgraf F. J. G.. A method to estimate magnetic induction from texture in non-oriented electrical steels. J. Magn. Magn. Mat. 226 (2001) 1536-1538.
  • 46. Hothersall D.C.: The investigation of domain walls in thin sections of iron by the electron interference method. Phil. Mag. 20 (1969) 89–112.
  • 47. de Campos M. F.: A General Coercivity Model for Soft Magnetic Materials. Materials Science Forum 727-728 (2012) 157-162
  • 48. Guyot M., Globus A.: Determination of domain wall energy and the exchange constant from hysteresis in ferromagnetic polycrystals. J. Physique Colloque C1, 38 (1977) pp. C1-157–C1-162, supplement
  • 49. de Campos M.F., de Castro, J.A.: An Overview on Nucleation Theories and Models. Journal of Rare Earths 37 (2019) 1015-1022.
  • 50. Soboyejo W.: Mechanical Properties of Engineered Materials. Marcel Dekker, New York, 2003.
  • 51. Ferguson J. B., Schultz B.F., Venugopalan D., Lopez H.F., Rohatgi P.K., Cho K., Kim C.S.. On the superposition of strengthening mechanisms in dispersion strengthened alloys and metal-matrix nanocomposites: Considerations of stress and energy. Met. Mater. Int. 20 (2014) 375-388.
  • 52. Chauhan A., Bergner F., Etienne A., Aktaa J., de Carlan Y., Heintze C., Litvinov D., Hernandez-Mayoral M., Onorbe E., Radiguet B., Ulbricht A.. Microstructure characterization and strengthening mechanisms ofoxide dispersion strengthened (ODS) Fe-9%Cr and Fe-14%Cr extruded bars. Journal of Nuclear Materials 495 (2017) 6-19.
  • 53. de Campos M. F.: Coercivity Mechanism in Hard and Soft Sintered Magnetic Materials. Materials Science Forum 802 (2014) 563-568.
  • 54. Vourna P., Hristoforou E., Ktena A., Svec P., Mangiorou E.: Dependence of Magnetic Permeability on Residual Stresses in Welded Steels. IEEE Transactions on Magnetics 53 (2017) 6200704.
  • 55. Hristoforou E., Ktena A., Vourna P., Mangiorou E., Aggelopoulos S., Svec P., Hervoches C.: State of the Art on Magnetic Properties – Stress Correlation in Steels. In: 19th World Conference on Non-Destructive Testing 2016.
  • 56. de Campos M.F., de Castro J.A.: Predicting Recoil Curves in Stoner–Wohlfarth Anisotropic Magnets. Acta Physica Polonica A 136 (2019) 737-739.
  • 57. de Campos M. F., Castro J. A.: Calculation of Recoil Curves in Isotropic and Anisotropic Stoner–Wohlfarth Materials. IEEE Transactions on Magnetics 56 (2020) 7512304.
  • 58. de Campos M. F., Emura M., Landgraf F.J.G.. Consequences of magnetic aging for iron losses in electrical steels. Journal of Magnetism and Magnetic Materials 304 (2006) e593–e595
  • 59. Costa L.F.T., Gerhardt G.J.L., Missell F.P., de Campos M.F.: Interpretation of Magnetic Barkhausen Noise Bursts in Low Frequency Measurements. Acta Physica Polonica A 136 (2019) 740-744.
  • 60. Costa L.F.T., de Campos M.F., Gerhardt G.J.L., Missell F.P.: Hysteresis and Magnetic Barkhausen Noise for SAE 1020 and 1045 Steels With Different Microstructures. IEEE Transactions on Magnetics 50 (2014) 2001504.
  • 61. Hosford W. F.: Physical Metallurgy, Second Edition. CRC Press, Boca Raton, 2010.
  • 62. Gao Y., Tian G.Y., Qiu F., Wang P., Ren W., Gao B.: Investigation of Magnetic Barkhausen Noise and Dynamic Domain Wall Behavior for Stress Measurement. In: 19th World Conference on Non-Destructive Testing 2016.
  • 63. Augustyniak B., Sablik M. J., Landgraf F.J.G., Jiles D.C., Chmielewski M., Piotrowski L., Moses A..J.: Lack of magnetoacoustic emission in iron with 6.5% silicon . Journal of Magnetism and Magnetic Materials 320 (2008), 2530-2533.
  • 64. Piotrowski L., Augustyniak B., Chmielewski M., Kowalewsk Z.: Possibility of Application of Magnetoacoustic Emission for the Assessment of Plastic Deformation Level in Ferrous Materials. IEEE Transactions on Magnetics 47 (2011) 2087-2092.
  • 65. Piotrowski L., Chmielewski M., Augustyniak B.: On the correlation between magnetoacoustic emission and magnetostriction dependence on the applied magnetic field. Journal of Magnetism and Magnetic Materials 410 (2016) 34–40.
  • 66. Williams H. J., Shockley W., Kittel C.: Studies of the Propagation Velocity of a Ferromagnetic Domain Boundary Phys. Rev. 80 (1950) 1090-1094.
  • 67. Pry R. H., Bean C. P.: Calculation of the Energy Loss in Magnetic Sheet Materials Using a Domain Model. J. Appl. Phys. 29 (1958) 532-533.
  • 68. Franco F.A., González M.F.R., de Campos M.F., Padovese L.R.: Relation between magnetic Barkhausen noise and hardness for Jominy quench tests in SAE 4140 and 6150 steels. Journal of Nondestructive Evaluation 32 (2013) 93-103.
  • 69. de Campos M. F., de Castro J. A.: The Critical Volume for Nucleation. Materials Science Forum 660-661 (2010) 279-283.
  • 70. Belanger A., Narayanan R.: Calculation of Hardness Using High and Low Magnetic Fields. in ECNDT 2006 - Tu.4.1.1.
  • 71. de Campos M. F., da Silva, F.A.S.; de Castro J.A.: Stoner-Wohlfarth Model for Nanocrystalline Anisotropic Sm2Co17 Magnets. Materials Science Forum 775-776 (2014) 431-436.
  • 72. Nicolis G., Prigogine I.: Self-organization in nonequilibrium systems. John Wiley & Sons, New York, USA, 1977.
  • 73. Brown L M.: Linear Work-Hardening and Secondary Slip in Crystals. In. Frank R.N. Nabarro,M.S. Duesbery (Eds.) Dislocations in Solids, Volume 11, Chapter 58, North-Holland, Amsterdam, 2002.
  • 74. Haller T.R., Kramer J.J.: Observation of Dynamic Domain Size Variation in a Silicon‐Iron Alloy J. Appl. Phys. 41 (1970) 1034-1035.
  • 75. de Campos M. F.: Loss Separation Model: A Tool for Improvement of Soft Magnetic Materials. Materials Science Forum 869 (2016) 596-601.
  • 76. Rodrigues-Jr D.L., Silveira J.R.F., Gerhardt G.J.L., Missell F.P., Landgraf, F.J.G., Machado R., de Campos M.F.: Effect of plastic deformation on the excess loss of electrical steel. IEEE Transactions on Magnetics 48 (2012) 1425-1428.
  • 77. Beckley, P. Thompson J.E.. Influence of inclusions on domain-wall motion and power loss in oriented electrical steel. PROC. IEE, 117 (1970) 2194-2200.
  • 78. Trindade M.A., de Campos, M.F. Landgraf, F.J.G., Lima, N.N. Almeida, A. Influence of Thickness on Magnetic and Microstructural Properties in Electrical Steels Semi-Processed of Low Efficiency. Materials Science Forum 930 (2018) 466-471.
  • 79. de Campos M F.: Optimized Materials for Wind Turbines and Electric Motors. in 2018-Sustainable Industrial Processing Summit vol 8, (2018) pp. 51-58.
  • 80. de Campos M.F.: Interpretation of Loss Separation with the Haller–Kramer Model. Acta Physica Polonica A 136 (2019) 705-708.
  • 81. Petryshynets I., Ková F., Petrov B., Falat L. Puchý V.: Improving the Magnetic Properties of Non-Oriented Electrical Steels by Secondary Recrystallization Using Dynamic Heating Conditions. Materials 12 (2019) 1914.
  • 82. de Campos M.F.: Methods for texture improvement in electrical steels. Przegląd Elektrotechniczny, 95 (2019) 7-11.
  • 83. Niku-Lari A.: Advances in Surface Treatments - Residual Stresses. Technology, Applications, Effects. Elsevier Ltd, Pergamon Press, Oxford, UK, 1987.
  • 84. Macherauch. E.: Introduction to Residual Stress. In A. Niku-Lari (ed) Advances in Surface Treatments, vol. IV. Elsevier Ltd, Pergamon Press, Oxford, UK, 1987.
  • 85. Totten G., Howes M., Inoue T.: Handbook of Residual Stress and Deformation of Steel (2001). ASM, Materials Park, Ohio, USA, 2002.
  • 86. Knott J. F., Sih G. C., Sommer E., Dahl W.: Application of Fracture Mechanics to Materials and Structures: Proceedings of the International Conference on Application of Fracture Mechanics to Materials and Structures, held at the Hotel Kolpinghaus, Freiburg, F.R.G., June 20–24, 1983. Springer Netherlands, 1984.
  • 87. Hauk V.: Structural and Residual Stress Analysis by Nondestructive Methods Evaluation - Application – Assessment, Elsevier, Amsterdam 1997.
  • 88. Volterra V.: Sur l’équilibre des corps élastiques multiplement connexes. Annales scientifiques de l’É.N.S. 3e série, tome 24 (1907) 401-517.
  • 89. Read Jr, W. T.: Dislocations in Crystals. McGraw-Hill, New York, USA, 1953.
  • 90. Hull D., Bacon D. J.: Introduction to Dislocations .5nd Edition, Elsevier, Amsterdam, 2011.
  • 91. Stibitz G.R.: Energy of lattice distortion. Phys. Rev. 49 (1936) 862.
  • 92. Zhao G.-H., Liang X.Z., Kim B., Rivera-Díaz-del-Castillo P.E.J.: Modelling strengthening mechanisms in beta-type Ti alloys. Materials Science and Engineering: A 756 (2019) 156-160.
  • 93. Capó Sánchez J., de Campos M.F., Padovese L.R.: Magnetic Barkhausen emission in lightly deformed AISI 1070 steel. Journal of Magnetism and Magnetic Materials 324 (2012) 11-14.
  • 94. Gerstein G., Klusemann B., Bargmann S., Schaper, M.: Characterization of the Microstructure Evolution in IF-Steel and AA6016 during Plane-Strain Tension and Simple Shear. Materials 8 (2015) 285–301.
  • 95. de Campos M.F., Sablik M.J., Landgraf F.J.G., Hirsch T.K., Machado R., Magnabosco R., Gutierrez C.J., Bandyopadhyay A.: Effect of rolling on the residual stresses and magnetic properties of a 0.5% Si electrical steel. Journal of Magnetism and Magnetic Materials. 320 (2008) e377-e380
  • 96. Callister W.D., Rethwisch D.G.: Materials science and engineering an introduction, 8th Edition, John Wiley, New York, USA, 2009.
  • 97. Na S.H., Seol J.B., Jafari M., Park C.G.: A Correlative Approach for Identifying Complex Phases by Electron Backscatter Diffraction and Transmission Electron Microscopy. Applied Microscopy 47 (2017) 43-49.
  • 98. Moussa C., Bernacki M., Besnard R., Bozzolo N.: Statistical analysis of dislocations and dislocation boundaries from EBSD data. Ultramicroscopy. 179 (2017) 63-72.
  • 99. Kalácska S., Groma I., Borbély A., Ispánovity P.D.: Comparison of the dislocation density obtained by HR-EBSD and X-ray profile analysis. Appl. Phys. Lett. 110 (2017) 091912
  • 100. Adams B.L., Kacher J.: EBSD-Based Microscopy: Resolution of Dislocation Density. CMC - Computers, Materials & Continua 14 (2009) 185-196.
  • 101. de Campos M.F., da Silva F.R.F., Lins J.F.C., Monlevade E.F., Alberteris Campos M., Perez-Benitez J., Goldenstein H., Padovese L.R..: Comparison of the Magnetic Barkhausen Noise for Low Carbon Steel in Deformed and Annealed Conditions. .IEEE Transactions on Magnetics 49 (2013) 1305-1309.
  • 102. Oding I. A., Zubarev P. V., Fridman Z. G.: Polygonization in metals. Metal Science and Heat Treatment of Metals. 3 (1961) 1–5.
  • 103. Hazra S.S., Gazder A.A., Pereloma E.V.: Stored energy of a severely deformed interstitial free steel. Materials Science and Engineering A 524 (2009) 158–167.
  • 104. Ossart F., Hug E., Hubert O., Buvat C., Billardon R.: Effect of punching on electrical steels: Experimental and numerical coupled analysis. IEEE Transactions on Magnetics 36 (2000) 3137-3140.
  • 105. Weiss H.A., Leuning N., Steentjes S., Hameyer K., Andorfer T., Jenner S, Volk W.: Influence of shear cutting parameters on the electromagnetic properties of non-oriented electrical steel sheets. Journal of Magnetism and Magnetic Materials 421 (2017) 250-259.
  • 106. Steentjes S., Franck D., Hameyer K., Vogt S., Bednarz M., Volk W., Dierdorf J., Hirt G., Schnabel V., Mathur H. N., Korte-Kerzel S.: On the Effect of Material Processing: Microstructural and Magnetic Properties of Electrical Steel Sheets in: 2014 4th International Electric Drives Production Conference (EDPC). INSPEC Accession Number: 14833374. DOI: 10.1109/EDPC.2014.6984436
  • 107. De Keijser Th. H., Langford J. I., Mittemeijer E. J., Vogels A. B. P.: Use of the Voigt Function in a Single-Line Method for the Analysis of X-ray Diffraction Line Broadening. J. Appl. Cryst. 15 (1982) 308-314
  • 108. Ungár T.: Strain Broadening Caused by Dislocations. Materials Science Forum, 278-281 (1998) 151-157.
  • 109. Murasawa K., Takamura M., Kumagai M., Ikeda Y., Suzuki H., Otake Y., Hama T., Suzuki S.: Determination Approach of Dislocation Density and Crystallite Size Using a Convolutional Multiple Whole Profile Software. Materials Transactions 59 (2018) 1135 to 1141.
  • 110. Ungár T.: Dislocation model of strain anisotropy. Powder Diffraction 23 (2008) 125-132.
  • 111. Kerber, M.B., Zehetbauer, M.J., Schafler, E., Spieckermann F. C., Bernstorff S., Ungar T.: JOM 63 (2011) 61-70.
  • 112. de Campos M.F., Loureiro S.A., Rodrigues D., Silva M.C.A., Lima, N.B.: Estimative of the Stacking Fault Energy for a FeNi(50/50) Alloy and a 316L Stainless Steel. Materials Science Forum 591-593 (2008) 3-7.
  • 113. de Campos M. F.: Selected Values for the Stacking Fault Energy of Face Centered Cubic Metals. Materials Science Forum 591-593( 2008) 708-711.
  • 114. Taylor G. I., Elam C. F.: The distortion of iron crystals. Proceedings of the Royal Society A 112 (1926) 337-361.
  • 115. Zappa K.: Constance Tipper Cracks the Case of the Liberty Ships. JOM 67 (2015) 2774-2776.
  • 116. You S., Huang Y., Kainer K.U., Hort N.: Recent research and developments on wrought magnesium alloys Journal of Magnesium and Alloys 5 (2017) 239-253.
  • 117. Poerschke D.: The Effects of forging on the microstructure and tensile properties of magnesium alloys AZ31 and ZK60. Case Western Reserve University, Cleveland, OH, USA; 2009.
  • 118. Mezger, H.: The Development of the Porsche Type 917 Car. Proceedings of the Institution of Mechanical Engineers, 186 (1972) 11–28.
  • 119. Kalpakjian S., Schmid S. R.: Manufacturing Engineering and Technology. Seventh Edition. 2014. Pearson. Prentice Hall, Upper Saddle River, New Jersey, USA. p. 325.
  • 120. Shimotomai M.: Study of Carbon Steel by Mechanical Spectroscopy beyond the Old Limitations. Res Rep Metals 1 (2017) 1000107.
  • 121. Hug E.: Evolution of the magnetic domain structure of oriented 3% SiFe sheets with plastic strains. J. Mater. Sci. 30 (1995) 4417–4424.
  • 122. Perevertov O., Thielsch J., Schäfer R.: Effect of applied tensile stress on the hysteresis curve and magnetic domain structure of grain-oriented transverse Fe-3%Si steel. Journal of Magnetism and Magnetic Materials 385 (2015) 358–367.
  • 123. Naumoski H., Riedmüller B., Minkow A., Herr U.: Investigation of the influence of different cutting procedures on the global and local magnetic properties of non-oriented electrical steel. Journal of Magnetism and Magnetic Materials 392 (2015) 126–133.
  • 124. Nakamura M., Hirose K., Nozawa T. , Matsuo M.: Domain refinement of grain oriented silicon steel by laser irradiation. IEEE Transactions on Magnetics 23 (1987) 3074 – 3076.
  • 125. Sablik M. J.: A model for asymmetry in magnetic property behavior under tensile and compressive stress in steel. IEEE Transactions on Magnetics 33 (1997) 3958 – 3960
  • 126. Sablik M. J., Jiles D. C.: Coupled magnetoelastic theory of magnetic and magnetostrictive hysteresis. IEEE Transactions on Magnetics 29 (1993) 2113 – 2123.
  • 127. Sablik M. J., Rios S., Landgraf F. J. G., Yonamine T., de Campos M. F.: Modeling of sharp change in magnetic hysteresis behavior of electrical steel at small plastic deformation Journal of Applied Physics 97 (2005) 10E518.
  • 128. Correa S.R., de Campos M.F., Marcelo C.J., de Castro J.A., Fonseca M.C., Chuvas T.C., Campos M.A., Padovese L.R.: Evaluation of Residual Stresses in Welded ASTM A36 Structural Steel by Metal Active Gas (MAG) Welding Process. Materials Science Forum 869 (2016) 567-571.
  • 129. Correa S.R., de Campos M.F., Marcelo C.J., de Castro J.A., Fonseca M.C., Chuvas T.C., Campos M.A., Padovese L.R.: Characterization of Residual Stresses and Microstructural by Technique of Magnetic Barkhausen Noise of API 5L X80 Steel Heat Treatment. Materials Science Forum 869 (2016) 556-561.
Uwagi
1. Work supported in part by Brazilian Agencies Fundaçao de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ) and Conselho Nacional de Desenvolvimento Científico e Tecnologico (CNPq).
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c098eca2-e715-4667-b74e-a68e6437f48d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.