PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermodynamic analysis of combined ORC-VCR system with recuperator and reheater

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The trend of utilization of low-grade thermal energy gain huge attention due to increase in energy demand and depletion of conventional resources of energy. Low grade energy can be used in ORC-VCR cycle for refrigeration purpose. In the present work, to improve the performance a modified ORC-VCR cycle, recuperator and reheater are integrated in the cycle. The thermodynamic analysis of the modified system has been conducted with R600a, R600, R290 and R1270 as working fluids under various operating conditions viz. evaporator temperature, condenser temperature, boiler exit temperature. Different parameters evaluated to assess the performance are overall COP, mass flow rate per kW cooling capacity, expansion ratio and compression ratio. From the analysis, butane is found as a best choice for the modified ORC–VCR cycle. It was found that for the modified ORC-VCR cycle at boiler exit temperature of 90°C and condenser temperature 40°C has system COP of 0.5542 with butane, which is 7.1% and 18% higher than that of ORC-VCR cycle with recuperator and simple ORC-VCR cycle, respectively.
Twórcy
  • Mechanical Engineering Department, MIET Meerut-250005, India
  • Department of Mechanical Engineering, School of Engineering & Technology, K. R. Mangalam University Gurugram-122013, Haryana, India
  • Faculty of Technology, Uttarakhand Technical University Dehradun 248007, India
Bibliografia
  • [1] O. Khanova, I. Matyushenko, E. Kochańska, V. Tretyak, O. Tofaniuk, Calculation of sustainable development index in the eu and ukraine, Acta Innov. 40 (2021) 79–97. https://doi.org/10.32933/ActaInnovations.40.6.
  • [2] B. Saleh, Parametric and working fluid analysis of a combined organic Rankine-vapor compression refrigeration system activated by low-grade thermal energy, J. Adv. Res. 7 (2016) 651–660. https://doi.org/10.1016/j.jare.2016.06.006.
  • [3] R. Senthil, Recent Innovations in Solar Energy Education and Research Towards Sustainable Energy Development, Acta Innov. 2022 (2022) 27–49. https://doi.org/10.32933/ActaInnovations.42.3.
  • [4] M. Szyba, Spatial planning and the development of renewable energy sources in poland, Acta Innov. 2021 (2021) 5–14. https://doi.org/10.32933/ActaInnovations.39.1.
  • [5] S. Kumar, S.K. Gautam, A. Kumar, R. Maithan, A. Kumar, Sustainability assessment of different nanoparticle for heat exchanger applications: An intuitionistic fuzzy combinative distance-based assessment method, Acta Innov. 40 (2021) 44–63. https://doi.org/10.32933/ActaInnovations.40.4.
  • [6] S. Thangavel, V. Verma, R. Tarodiya, P. Kaliyaperumal, Comparative analysis and evaluation of different working fluids for the organic rankine cycle performance, Mater. Today Proc. 47 (2021) 2580–2584. https://doi.org/10.1016/j.matpr.2021.05.064.
  • [7] D. Raghulnath, K. Saravanan, J. Mahendran, M. Ranjith Kumar, P. Lakshmanan, Analysis and optimization of organic Rankine cycle for IC engine waste heat recovery system, Mater. Today Proc. 21 (2020) 30–35. https://doi.org/10.1016/j.matpr.2019.05.355.
  • [8] S. Quoilin, Experimental Study and Modeling of a Low Temperature Rankine Cycle for Small Scale Cogeneration ., Univ. Liege. (2007) 129.
  • [9] W. Xu, R. Zhao, S. Deng, L. Zhao, S.S. Mao, Is zeotropic working fluid a promising option for organic Rankine cycle: A quantitative evaluation based on literature data, Renew. Sustain. Energy Rev. 148 (2021) 111267. https://doi.org/10.1016/j.rser.2021.111267.
  • [10] J.G. Andreasen, E. Baldasso, M.R. Kærn, T. Weith, F. Heberle, D. Brüggemann, F. Haglind, Techno-economic feasibility analysis of zeotropic mixtures and pure fluids for organic Rankine cycle systems, Appl. Therm. Eng. 192 (2021) 116791. https://doi.org/10.1016/j.applthermaleng.2021.116791.
  • [11] X. Li, S. Lecompte, J. Van Nieuwenhuyse, K. Couvreur, H. Tian, G. Shu, M. De Paepe, C.N. Markides, Experimental investigation of an organic Rankine cycle with liquid-flooded expansion and R1233zd(E) as working fluid, Energy Convers. Manag. 234 (2021) 113894. https://doi.org/10.1016/j.enconman.2021.113894.
  • [12] Y. Chen, J. Xu, D. Zhao, J. Wang, P.D. Lund, Exergo-economic assessment and sensitivity analysis of a solar-driven combined cooling, heating and power system with organic Rankine cycle and absorption heat pump, Energy. 230 (2021) 120717. https://doi.org/10.1016/j.energy.2021.120717.
  • [13] A. Kumar, P.R. Gupta, A.K. Tiwari, Z. Said, Performance evaluation of small scale solar organic Rankine cycle using MWCNT + R141b nanorefrigerant, Energy Convers. Manag. 260 (2022) 115631. https://doi.org/10.1016/j.enconman.2022.115631.
  • [14] K.S. Rawat, A.K. Pratihar, Numerical Investigation of Ice Slurry Flow in a Horizontal Pipe, IOP Conf. Ser. Mater. Sci. Eng. 310 (2018) 012095. https://doi.org/10.1088/1757-899X/310/1/012095.
  • [15] K.H. Kim, H. Perez-Blanco, Performance analysis of a combined organic Rankine cycle and vapor compression cycle for power and refrigeration cogeneration, Appl. Therm. Eng. 91 (2015) 964–974. https://doi.org/10.1016/j.applthermaleng.2015.04.062.
  • [16] B. Saleh, Energy and exergy analysis of an integrated organic Rankine cycle-vapor compression refrigeration system, Appl. Therm. Eng. 141 (2018) 697–710. https://doi.org/10.1016/j.applthermaleng.2018.06.018.
  • [17] H. Li, X. Bu, L. Wang, Z. Long, Y. Lian, Hydrocarbon working fluids for a Rankine cycle powered vapor compression refrigeration system using low-grade thermal energy, Energy Build. 65 (2013) 167–172. https://doi.org/10.1016/j.enbuild.2013.06.012.
  • [18] C. Yue, F. You, Y. Huang, Thermal and economic analysis of an energy system of an ORC coupled with vehicle air conditioning, Int. J. Refrig. 64 (2016) 152–167. https://doi.org/10.1016/j.ijrefrig.2016.01.005.
  • [19] K.S. Rawat, H. Khulve, A.K. Pratihar, Thermodynamic Analysis of Combined ORC-VCR System Using Low Grade Thermal Energy, Int. J. Res. Appl. Sci. Eng. Technol. 3 (2015) 515–522.
  • [20] O. Pektezel, H.I. Acar, Energy and exergy analysis of combined organic rankine cycle-single and dual evaporator vapor compression refrigeration cycle, Appl. Sci. 9 (2019) 5028. https://doi.org/10.3390/app9235028.
  • [21] A. Nabati, M. Saadat-Targhi, Energy Equipment and Systems Use of solar radiation to produce cold water for hospital air conditioning system using the combined organic Rankine-vapor compression cycle, Energy Equip. Sys. 9 (2021) 53–69. http://energyequipsys.ut.ac.irwww.energyequipsys.com.
  • [22] K.S. Rawat, V.S. Bisht, A.K. Pratihar, Thermodynamic analysis and optimization CO2 based trasncritical Cycle, Int. J. Res. Applies Sci. Eng. Technol. 3 (2015) 287–293.
  • [23] V.S. Bisht, A.K. Pratihar, P.K. Vishnoi, P. Bhandari, R1234YF : An Eco-Friendly Drop In Replacement of R12 and R134A, Asian J. Appl. Sci. Technol. 2 (2018) 36–46.
  • [24] A. Goyal, A.F. Sherwani, D. Tiwari, Optimization of cyclic parameters for ORC system using response surface methodology (RSM), Energy Sources, Part A Recover. Util. Environ. Eff. 43 (2021) 993–1006. https://doi.org/10.1080/15567036.2019.1633443.
  • [25] M.S. Salim, M.H. Kim, Multi-objective thermo-economic optimization of a combined organic Rankine cycle and vapour compression refrigeration cycle, Energy Convers. Manag. 199 (2019) 112054. https://doi.org/10.1016/j.enconman.2019.112054.
  • [26] A.H. Bademlioglu, A.S. Canbolat, O. Kaynakli, Multi-objective optimization of parameters affecting Organic Rankine Cycle performance characteristics with Taguchi-Grey Relational Analysis, Renew. Sustain. Energy Rev. 117 (2020) 109483. https://doi.org/10.1016/j.rser.2019.109483.
  • [27] V.S. Bisht, a K. Pratihar, Thermodynamic Analysis of Actual Vapour Compression System With R22 and Its Eco-Friendly Alternatives Refrigerants, Int. J. Adv. Res. Sci. Eng. 8354 (2014) 121–132.
  • [28] V. Singh Bisht, Thermodynamic Analysis of Kapitza Cycle based on Nitrogen Liquefaction, IOSR J. Eng. 4 (2014) 38–44. https://doi.org/10.9790/3021-04563844.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c08e6b89-375f-44a1-8826-c589a260d1b6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.