PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical Simulation Study of the Hydrodynamic Properties of a Floating Breakwater of Pontoons

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To address the issue of insufficient wave dissipation capacity in standard floating breakwaters consisting of pontoons, this research proposes a combined floating breakwater with T-block connections. AQWA software is used to conduct numerical simulation studies on the dissipation characteristics of waves, and the reliability of the results is confirmed by integrating them with tests of a physical model. It is found that the transmission coefficient of the combined floating breakwater increases with the wave period. When the incident wave period T<6 s, increasing the relative height of the T-block improves the wave dissipation performance; when T>6 s, the effect is weakened; and at T=8 s, the change in height is basically unaffected. Increasing the relative width of the T-block is more significant in terms of the enhancement of the wave dissipation performance, whereas the height of the incident wave has a smaller effect on the transmission coefficient, and the transmission coefficient tends to increase with the increase of the wave height only in the case where T=8 s. The height of the incident wave has little effect on the transmission coefficient. The transmission coefficient increases with the wave height only when T=8 s; when the wave period is small (e.g. 4 s), the effect of wave elimination is enhanced by increasing the draught depth, and the draught does not have a significant effect on the wave dissipation performance when T>6 s. Compared with a typical floating pontoon breakwater with a single- and double-row arrangement, the combined floating pontoon breakwater has a better effect in terms of dissipating the waves, and its advantage is significant for a period T≤6 s, with a 44% increase in the maximum wave abatement compared to a single-row arrangement. In addition, the free-motion response is analysed to clarify the effects of different factors on the transverse and pendulum motion. This study provides an important reference for the design and application of floating pontoon breakwaters.
Rocznik
Tom
Strony
47--65
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • School of Civil and Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China
autor
  • School of Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China
autor
  • School of Civil and Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China
autor
  • School of Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China
autor
  • School of Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China
autor
  • State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China
Bibliografia
  • 1. Shen YS, Zhou YR, Pan JN, Wang XG. Research progres on floating breakwaters. Journal of Hydraulic Engineering and Water Resources 2016, vol. 5, pp. 124-132. doi: https://doi.org/10.16198/j.cnki.1009-640X.2016.05.018
  • 2. Ji CY, Cheng Y. Hydrodynamic and wave attenuation performance analysis theories and methods for floating breakwaters. Beijing: Science Press; 2018. ISBN 978-7-03-059330-6
  • 3. Fu RU, Mao JZ, Yin WJ, Xu YB. Research status of floating breakwater structure. Port & Waterway Engineering 2016, vol. 6, pp. 61-66. https://doi.org/10.16233/j.cnki. issn1002-4972.2016.06.012
  • 4. Dong HY. Study on hydrodynamic characteristics of a boxhorizontal plate floating breakwater. PhD thesis, Dalian University of Technology, 2010.
  • 5. Lianyungang Built China’s First Floating Breakwater: Sea Surface Converted into “Fertile Land”. Retrieved from: https://news.sina.com.cn/c/2002-09-03/1315704178.html
  • 6. Sawaragi T. Coastal engineering—Waves, beaches, wavestructure interactions. Elsevier; 1995. ISBN 0-08-054484-3
  • 7. Ji C-Y, Chen X, Cui J, Yuan Z-M, Incecik A. Experimental study of a new type of floating breakwater. Ocean Eng 2015, vol. 105, pp. 295-303. https://doi.org/10.1016/j.oceaneng.2015.06.046.
  • 8. He CY, Wang DT, Feng WB. Study on wave attenuation performance of rectangular box-type floating breakwater. Port & Waterway Engineering 2014, vol. 1, pp. 14-18. https://doi.org/10.16233/j.cnki.issn1002-4972.2014.01.001
  • 9. Loukogeorgaki E, Yagci O, Sedat Kabdasli M. 3D experimental investigation of the structural response and the effectiveness of a moored floating breakwater with flexibly connected modules. Coast Eng 2014, vol. 91, pp.164-180. https://doi.org/10.1016/j.coastaleng.2014.05.008
  • 10. Loukogeorgaki E, Lentsiou EN, Aksel M, Yagci O. Experimental investigation of the hydroelastic and the structural response of a moored pontoon-type modular floating breakwater with flexible connectors. Coast Eng 2017, vol. 121, pp. 240-254. https://doi.org/10.1016/j.coastaleng.2016.09.002.
  • 11. Li S, Wei F, Xu H, Li Y, Zhang L. Experiment study on wave attenuation performance of a new type of porous floating breakwater. Ocean Eng 2024, vol. 309, p. 118334. https://doi.org/10.1016/j.oceaneng.2024.118334
  • 12. Hou Y. Experimental study on hydrodynamic characteristics of single box-chain floating breakwater. Master’s Thesis, Dalian University of Technology, 2009.
  • 13. Cheng X, Li S, Wang G. Experimental study on hydrodynamic characteristics of barge-type breakwaters under different mooring methods. J Mar Sci Eng 2023, vol. 11, p. 1016. https://doi.org/10.3390/jmse11051016
  • 14. Sutko AA. Floating breakwaters—A wave tank study. J Pet Technol 1975, vol. 27, pp. 269-273. https://doi.org/10.2118/4728-PA
  • 15. Christian CD. Floating breakwaters for small boat marina protection. Proceedings of the Coastal Engineering 2000; American Society of Civil Engineers: Sydney, Australia, March 23 2001; pp. 2268-2277.
  • 16. Headland JR, Vallianos L. Dynamic analysis of floating breakwater mooring systems. Proceedings of the Coastal Engineering 1990; American Society of Civil Engineers: Delft, The Netherlands, May 20 1991; pp. 1320-1333.
  • 17. Chen C, Chen XQ, Yang Q, Lyu WY. Wave attenuation performance of wing-plate floating breakwater. Port & Waterway Engineering 2022, vol. 9, pp. 8-14+85. doi: https://doi.org/10.16233/j.cnki.issn1002-4972.20220901.024
  • 18. Cheng X, Liu C, Zhang Q, He M, Gao X. Numerical study on the hydrodynamic characteristics of a double-row floating breakwater composed of a pontoon and an airbag. J Mar Sci Eng 2021, vol. 9, p. 983. https://doi.org/10.3390/jmse9090983
  • 19. Wang G, Bar D, Schreier S. The potential of end-of-life ships as a floating seawall and the methodical use of gap resonance for wave attenuation. Ocean Eng 2024, vol. 298, p. 117246. https://doi.org/10.1016/j.oceaneng.2024.117246
  • 20. Yin Z, Ni Z, Luan Y, Zhang X, Li J, Li Y. Hydrodynamic characteristics of a box-type floating breakwater with restrained piles under regular waves. Ocean Eng 2023, vol. 280, p. 114408. https://doi.org/10.1016/j.\oceaneng.2023.114408
  • 21. Tabatabaei SMR, Zeraatgar H. Parametric comparison of rectangular and circular pontoons performance as floating breakwater numerically. Pol Marit Res 2018, vol. 25, pp. 94-103. https://doi.org/10.2478/pomr-2018-0029
  • 22. Zheng Y, Li J, Mu Y, Zhang Y, Huang S, Shao X. Numerical study on wave dissipation performance of OWC-perforated floating breakwater under irregular waves. Sustainability 2023, vol. 15, p. 11427. https://doi.org/10.3390/su151411427
  • 23. Mao XQ, Guo JT, Ji CY, Bian XQ. Analysis of wave load characteristics for arc-layout floating breakwater. Ship Science and Technology 2022, vol. 44, pp. 92-99. https://doi.org/10.3404/j.issn.1672-7649.2022.15.019.
  • 24. Wu S-X, Sun P-N, Li Q-Y, Rubinato M, Chen J-Q. Numerical study on a new floating breakwater with openings, arcshaped wings, and plates using the SPH method. Ocean Eng 2025, vol. 324, p. 120353. https://doi.org/10.1016/j.oceaneng.2025.120353
  • 25. Yuan H, Zhang H, Wang G, Tu J. A numerical study on a winglet floating breakwater: enhancing wave dissipation performance. Ocean Eng 2024, vol. 309, p. 118532. https://doi.org/10.1016/j.oceaneng.2024.118532
  • 26. Sun B, Li C, Yang S, Zhang H, Song Z. Experimental and numerical study on the wave attenuation performance and dynamic response of kelp-box type floating breakwater. Ocean Eng 2022, vol. 263, p. 112374. https://doi.org/10.1016/j.oceaneng.2022.112374
  • 27. Guo W, Zou J, He M, Mao H, Liu Y. Comparison of hydrodynamic performance of floating breakwater with taut, slack, and hybrid mooring systems: An SPH-based preliminary investigation. Ocean Eng 2022, vol. 258, p. 111818. https://doi.org/10.1016/j.oceaneng.2022.111818
  • 28. Ursell F. The effect of a fixed vertical barrier on Surface waves in deep water. Math Proc Camb Philos Soc 1947, vol. 43, pp. 374-382. https://doi.org/10.1017/S0305004100023604
  • 29. eelamani S, Rajendran R. Wave interaction with T-type breakwaters. Ocean Eng 2002, vol. 29, pp. 151-175. https://doi.org/10.1016/S0029-8018(00)00060-3
  • 30. Gesraha MR. Analysis of shaped floating breakwater in oblique waves: I. Impervious rigid wave boards. Appl Ocean Res 2006, vol. 28, pp. 327-338. https://doi.org/10.1016/j.apor.2007.01.002
  • 31. Huang Z, He F, Zhang W. A floating box-type breakwater with slotted barriers. J Hydraul Res 2014, vol. 52, pp. 720-727. https://doi.org/10.1080/00221686.2014.888690
  • 32. He F, Huang Z, Wing-Keung Law A. Hydrodynamic performance of a rectangular floating breakwater with and without pneumatic chambers: An experimental study. Ocean Eng 2012, vol. 51, pp. 16-27. https://doi.org/10.1016/j.oceaneng.2012.05.008
  • 33. China Classification Society. Rules for Construction of Steel River Ships. 6th ed. Beijing, China: China Communications Press; 2016.
  • 34. Wang SQ, Liang BC. Wave mechanics in ocean engineering. Qingdao, China: China Ocean University Press; 2013. ISBN 978-7-5670-0235-7
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c08e4899-ba60-4e34-81f0-64a35719237c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.