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Abstract: In this paper, we introduce an agent-based repre-
sentation of games, in order to propose a compact representation
for multi-party games in game theory. Our method is inspired by
concepts in process theory and process algebra. In addition, we in-
troduce an algorithm whose input is a game in the form of process
algebra (proposed in this paper) and as an output, the algorithm
finds the Nash equilibrium of the game in linear space complexity.
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1. Introduction

Extensive representation form of a game is a directed graph whose nodes are
players, and edges are actions. Assuming that the game has n agents, and each
agent has two actions available, the game can be represented by a graph of the
size of O(2n).

However, by explaining the behavior of each agent individually using an
adequate process (called process-game), and obtaining the whole game through
parallel composition of these process-games, it is possible to represent the same
game in O(n) space. We take advantage of process algebra to define process-
games and the appropriate notion of parallel composition for them.

The word “process” refers to the behavior of a system which is a set of actions
that are performed in the system and the order of their execution. The pro-
cess theory makes it possible to model the behavior of a system with enormous
complexity through modeling the behavior of its components (Middelburg and
Reniers, 2005). By taking advantage of process algebra - automating calcula-
tions and running algorithms using parallel computing techniques - we can code
the process theory terms and definitions (Fokkink, 2007; Tadjouddine, 2008).
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On the other hand, a game is a system and its behavior is established by the
behavior of all of its players (components). Hence, the game could be studied
and formally modeled as an interactive process (Van Benthem, 2002).

Moving along this path in formal methods, in order to reduce the represen-
tation of games with lots of players, we modify the process theory in an ap-
propriate manner to provide a model called “process-game” that encompasses
both process theory and game theory notions. This proposed process algebraic
model makes it possible to have a compact representation for extensive games -
specially in social extensive games which have local interaction - via appropriate
parallel composition (Section 3).

There exist also other attempts to reduce the representation of games with
very high number of players. In comparison with the graph-based representation
that is proposed to reach the same goal (Kearns, Littman and Singh, 2001) our
proposed model facilitates the reduction of representation of games in the formal
method.

Eventually, to manipulate the process-game model efficiently, we propose an
algorithm to find the equilibrium path of games in linear space complexity by
using a revision of depth first search and backward induction (Section 4).

2. Preliminaries

In this section, we review some preliminary concepts in game and process theory.

2.1. Game-theoretic concepts

In this part we briefly review definitions and concepts of strategic and extensive
games with perfect information which appeared in the literature, using the same
notations as in Osborne and Rubinstein (1994), page 89.

A strategic game is a model of decision-making such that decision-makers
choose their plan simultaneously from their possible actions, once and for all.

Definition 1 (Strategic Game) A strategic game consists of:
• A finite set of players N

• for each player i ∈ N a nonempty set of actions Ai

• for each player i ∈ N a payoff function Πi : A1 × · · · ×An →R.

If for each player i the action set Ai is finite, the the game is finite.

Example 1 (prisoner’s dilemma) Two members of a criminal gang are ar-
rested and imprisoned. Each prisoner is in solitary confinement with no means
of speaking to or exchanging messages with the other. The police admit they
do not have enough evidence to convict the pair on the principal charge. They
plan to sentence both to a year in prison on a lesser charge. Simultaneously,
the police offer each prisoner a Faustian bargain. Each prisoner is given the op-
portunity either to betray (B) the other, by testifying that the other committed
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the crime, or to cooperate (C) with the other by remaining silent. Here’s how
it goes:
• If A and B both betray the other, each of them serves 2 years in prison
• If A betrays B but B remains silent, A will be set free and B will serve 3
years in prison (and vice versa)
• If A and B both remain silent, both of them will only serve 1 year in prison
(on the lesser charge).

The above situation is shown as a strategic game in Fig.1.

B C
B (-2,-2) (0,-3)
C (-3,0) (-1,-1)

Figure 1: Strategic representation of Example 1

The set of players is N = {1, 2}. The possible actions for each player come
from the set of A1 = A2 = {B,C}. Each cell in the above table corresponds to
a strategy profile and shows the resulting payoffs. A strategy profile is a set of
strategies for all players which fully specifies all actions in a game. A strategy
profile must include one and only one strategy for every player. In the cell, the
first value is the player 1’s payoff and the player 2’s payoff is the second one.

One of the most common solution concepts in game theory is Nash equilib-
rium. This notion captures a steady state, in which no player wants to deviate
from the current state if actions of the other players are fixed (therefore, all
players choose their action in a rational manner).

Notation 1 For each strategy profile s, s−i shows the action of all players,
except for player i.

Definition 2 (Nash Equilibrium) A Nash equilibrium of a strategic game
Γ = 〈N, (Ai), (Πi)〉 is a strategy profile s∗ with the property that for every player
i ∈ N we have

Πi(s
∗
−i, s

∗
i ) ≥ Πi(s

∗
−i, si), ∀si ∈ Ai.

Example 2 In Example 1, strategy profile (B,B) is a Nash equilibrium, be-
cause, if player 1 deviates from action B to C, his payoff decreases from −2
to −3 in the strategy profile (C,B). Therefore, he has no motivation to devi-
ate from the state (B,B). Also, because of symmetry, we can specify the same
reason for player 2 to have no motivation to deviate from the current state.
Therefore, strategy profile (B,B) is a Nash equilibrium in this game.

Another form of games, which is the pivot of discussion in this paper, is ex-
tensive game. In this form, decision-makers act sequentially (unlike in strategic
game).
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Definition 3 (Extensive Game with Perfect Information) An extensive
game with perfect information is defined by a four-tuple 〈N,H, P, (Πi)〉 which
has the following properties:
• A set N of players
• A set H of sequences (finite or infinite) that satisfies the following three
properties:

– The empty sequence ∅ (the empty history representing the start of
the game) is a member of H.

– If (ak)k=1,...,K ∈ H (where K may be infinite) and positive integer
L < K then (ak)k=1,...,L ∈ H.

– If an infinite sequence (ak)k=1,...,∞ satisfies (ak)k=1,...,L ∈ H for
every positive integer L then (ak)k=1,...,∞ ∈ H.

Each member of H is a history and each term of a history is an action
which is taken by a player. A history (ak)k=1,...,K ∈ H is terminal if it is
infinite or there is no aK+1 such that (ak)k=1,...,K+1 ∈ H. The set of all
terminal histories is denoted by Z.
• A function P (the player function) that assigns to each nonterminal his-
tory (each member of H\Z) a member of N , P (h) returns the player who
takes an action after the history h (P : H\Z → N).
• A function Π (the payoff function) that assigns to each terminal history
(each member of Z) a member of R|N |(Π : Z → R|N |, Πi(z) is player i’s
payoff in terminal history z ∈ Z).

An extensive game with perfect information is finite if and only if the set
H of possible histories is finite. Throughout this paper, whenever we use the
term extensive games, we mean extensive games with perfect information. In an
extensive game, P (h) chooses an action after any nonterminal history h from
the set A(h) = {a : (h, a) ∈ H} where (h, a) means a history h followed by an
action a which is one of the actions available to the player who moves after h.

Definition 4 (Strategy) A strategy of player i ∈ N in an extensive game
〈N,H, P, (Πi)〉 is a function that assigns an action from A(h) to each h ∈ H\Z
(nonterminal history) for which P (h) = i.

The outcome of a strategy profile s is a terminal history, which is constructed
by s, and is denoted by O(s).

Example 3 Two people (“husband” and “wife”) are buying items for a dinner
party. The husband buys either fish (F) or meat (M) for the meal; the wife buys
either red wine (R) or white wine (W). Both people prefer red wine with meat and
white wine with fish, rather than either of the opposite combinations. However,
the husband prefers meat over fish, while the wife prefers fish over meat. Assume
that the husband buys the meal and tells his wife what was bought; his wife then
buys some wine. If we want to consider this problem as an extensive game with
perfect information we can determine its component like
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• N = {Wife,Husband}
• The possible actions for the husband are members of the set AHusband =
{F,M}, while wife’s actions come from AWife = {R,W}. So, in this
example, Z is a set of sequences which are started by the action F or M

and are terminated by R or W . All possible histories H and terminal
histories Z are shown below:

H = {(∅), (F ), (M), (F,R), (F,W ), (M,R), (M,W )}

Z = {(F,R), (F,W ), (M,R), (M,W )}.

• For each h ∈ H\Z , P (h) is as follows:

P ((∅)) = Husband , P ((F )) = (Wife), P ((M)) = (Wife).

• We can represent the preferences as utility-based payoffs:

ΠHusband (M,R) = 2, ΠHusband (F,W ) = 1,

ΠHusband (F,R) = ΠHusband (M,W ) = 0,

ΠWife (M,R) = 1, ΠWife (F,W ) = 2, ΠWife (F,R) = ΠWife (M,W ) = 0.

Nash equilibrium is a common solution concept for extensive games. This
concept is defined below.

Definition 5 The strategy profile s∗ in an extensive game with perfect infor-
mation is a Nash equilibrium if for each player i ∈ N we have:

Πi(O(s∗)) ≥ Πi(O(si, s
∗
−i)) for every strategy si of player i.

The notion of a Nash equilibrium ignores the sequential structure of an extensive
form game and treats strategies as if they were choices made once and for all.
To refine the Nash equilibrium definition we introduce a new notion of subgame
perfect equilibrium (see Narahari, 2014, Chapter 3).

Definition 6 Let Γ = 〈N,H, P, (Πi)〉 be an extensive game with perfect infor-
mation. The subgame of Γ that follows the history h ∈ H\Z (a nonterminal
history) is the extensive game Γ(h) = 〈N,H |h, P |h,Π|h〉 where all sequences
h′ of actions for which (h, h′) ∈ H are in the set H |h and vice versa, P |h is
the same as function P , but its domain comes from the set H |h, and for each
h′, h′′ ∈ Z|h (the set Z|h consists of all the terminal histories in the set H |h)
it is defined that Πi|h(h′) > Πi|h(h′′) if and only if Πi(h, h

′) > Πi(h, h
′′) (note

that (h, h′), (h, h′′) ∈ Z).

In the light of the previous considerations, we can define the notion of sub-
game perfect equilibrium, as mentioned before, using the notion of subgame.
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Definition 7 The strategy profile s∗ in an extensive game with perfect infor-
mation is a subgame perfect equilibrium if for every player i ∈ N and every
nonterminal history h ∈ H\Z for which P (h) = i we have:

Πi|h(Oh(s
∗|h)) ≥ Πi|h(Oh(si, s

∗
−i|h))

for every strategy si of player i in the subgame Γ(h).

Most often, an extensive game is represented by a tree with marked the
subgame perfect Nash equilibria (SPNE) of the game on the tree as in (Narahari,
2014) Chapter 3 (for a better understanding see Example 3 and Fig. 2).

Figure 2: Game of Example 3 represented as a tree, showing the SPNEs with thick
edges

The definition of extensive game with perfect information (Definition 3)
can be generalized by allowing simultaneous moves of the players. This type
of games is called extensive game with imperfect information, in this paper.
An extensive game with imperfect information is determined by a quintuple
〈N,H, P, (Ii), (Πi)〉. Relative to the definition of an extensive game with perfect
information, the new element is the collection (Ii)i∈N of information partitions.
For each player i ∈ N , Ii is a partition of {h ∈ H : P (h) = i} with the property
that A(h) = A(h′) whenever h and h′ are in the same member of the partition.
For Ii ∈ Ii, we denote by A(Ii) the set A(h), and by P (Ii) the player P (h)
for any h ∈ Ii (Ii is the information partition of player i; a set Ii ∈ Ii is an
information set of player i) (Osborne and Rubinstein, 1994).

We define a variant of the battle of sexes (BoS) game (Example 3) as an
example of extensive games with imperfect information.

Example 4 Assume in Example 3 that wife can decide whether to hold a dinner
party or not. If she decides not to hold the dinner party, the game ends and
nothing happens. On the other hand, there are games similar to Example 3
where players move simultaneously instead of moving sequentially. As shown in
Fig. 3, simultaneous moving is specified by dashed line and means the wife does
not know in which history she is.

Formally, we have P (∅) = P (H,M) = P (H,F ) = Wife, P (H) = Husband,
IWife = {{∅}, {(H,M), (H,F )}}, and IHusband = {{H}}.
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Figure 3: Game of the Example 4 represented as a tree with dashed line meaning
that wife and husband move simultaneously on that level (as an example of extensive
game with imperfect information).

Definition 8 A pure strategy of player i ∈ N in an extensive game with im-
perfect information 〈N,H, P, (Ii), (Πi)〉 is a function that assigns an action in
A(Ii) to each information set Ii ∈ Ii.

2.2. Process theory

The notion of a transition system can be considered to be the fundamental
notion for the description of process behavior (Middelburg and Reniers, 2005).
In this section we state some abstract formal definitions regarding transition
systems and specify the notion of authentication using these definitions.

Definition 9 A transition system T is a quintuple (S,A,→, ↓, s0) where
• S is a set of states,
• A is a set of actions containing an internal action τ ,
• →⊆ S ×A× S is a set of transitions,
• ↓⊆ S is a set of successfully terminating states,
• s0 ∈ S is the initial state.

The set ։⊆ S ×A⋆ × S shows generalized transitions of T (A⋆ is the set of
all possible chains of actions from A). A state s ∈ S is called reachable state

of T if there is σ ∈ A⋆ such that s0
σ
։ s. The set of all reachable states of

a transition system T is denoted by reach(T ). We define act(T ) = {a ∈ A |
∃s, s′ ∈ reach(T ) (s, a, s′) ∈→}. In the sequel, we assume that every transition
system T is connected, i.e., reach(T ) = S, and act(T ) = A. If S and A are
finite, T is called a finite transition system.

Notation 2 We refer to (s, a, s′) ∈→ by s
a
→ s′.

We define Trace = {σ ∈ A⋆ | ∃s′ ∈ S s0
σ
։ s′}. If there exists n ∈ N such

that ∀σ ∈ Trace (|σ| ≤ n), where |σ| is the length of the sequence σ, then T
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is called a finite-depth transition system. If for every s ∈ S, {(s, a, s′) ∈→| a ∈
A, s′ ∈ S} is finite, then T is called a finite-branching transition system. By the
notation τ , we refer to the silent action.

Proposition 1 If T is both a finite-depth and a finite-branching transition sys-
tem, then it is a finite transition system.

Proof It is straightforward. �

Definition 10 Let T = (S,A,→, ↓, s0) be a transition system. Then T is

deterministic if the following condition holds: whenever s0
σ
։ s and s0

σ
։ s′, then

s = s′.

Definition 11 Let A be a set of actions. A communication function on A is a
partial function γ : A×A→ A such that for any a, b ∈ A: γ(τ, a) is not defined,
and if γ(a, b) is defined, then γ(b, a) is defined and γ(a, b) = γ(b, a). The image
of γ is shown by Cγ . We define Hγ = A−Cγ. Assume that if γ(a, b) is defined,
then both a, b ∈ Hγ.

Definition 12 (Parallel Composition) Let T = (S,A,→, ↓, s0) and T ′ =
(S′, A′,→′, ↓′, s′0) be two transition systems, and γ a communication function
on a set of actions that includes A ∪ A′. The parallel composition of T and T ′

under γ, written T ‖ T ′, is the transition system (S′′, A′′,→′′, ↓′′, s′′0 ) where
• S′′ = S × S′,
• A′′ = A ∪ A′ ∪ {γ(a, a′) | a ∈ A, a′ ∈ A′}
• →′′ is the smallest subset of S′′ ×A′′ × S′′ such that:

- if s1
a
→ s2 and s′ ∈ S′, then (s1, s

′)
a
→ ′′(s2, s

′),

- if s′1
b
→ s′2 and s ∈ S, then (s, s′1)

b
→ ′′(s, s′2),

- if s1
a
→ s2, s

′
1

b
→ s′2, and γ(a, b) is defined, then (s1, s

′
1)

γ(a,b)
→ ′′(s2, s

′
2),

• ↓′′=↓ × ↓′,
• s′′0 = (s0, s

′
0).

Definition 13 (Encapsulation) Let T = (S,A,→, ↓, s0) be a transition sys-
tem. Let H be a set of actions. The encapsulation of T with respect to H,
written as δH(T ), is the transition system (S′, A′,→′, ↓′, s′0) where
• S′ = S, A′ = A, ↓′=↓, s′0 = s0 and
• →′=→ ∩(S × (A−H)× S).

Assume T1 and T2 are two processes, and execute them in parallel. Then
for H = A − Cγ , the encapsulation of the process T1 ‖ T2 makes the processes
communicate. It means that the difference between T1 ‖ T2 and δH(T1 ‖ T2) is
that in the second process only communication actions exist.

Proposition 2 If T and T ′ are two transition systems, and T is finite-depth,
then δHγ

(T ‖ T ′) is finite-depth.
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Proof It is straightforward. �

Definition 14 Assume two transition systems T = (S,A,→, ↓, s0) and T ′ =
(S′, A′,→′, ↓′, s′0), and for s ∈ S, let l(s) = {(s, a, t) ∈→| a ∈ A, t ∈ S}, and for
every s′ ∈ S′, l′(s′) = {(s′, b, t′) ∈→′| b ∈ A′, t′ ∈ S′}. We say that T, T ′ are
communication finite-branching with respect to communication function γ, if for

any (s, s′) ∈ S×S′ the set {((s
a
→ t), (s′

b
→ ′t)) ∈ l(s)× l(s′) | γ(a, b) is defined}

is finite.

Proposition 3 If two transition systems,
T = (S,A,→, ↓, s0) and T ′ = (S′, A′,→′, ↓′, s′0)
are communication finite-branching with respect to a communication function
γ, then δHγ

(T ‖ T ′) is finite-branching.

Proof It is straightforward. �

3. The processes of games

In this section, we introduce a process-algebraic representation for extensive
games with perfect information in order to reduce the large social games into
logarithmic (or polylog) size proportional to the size of extensive representation
of the same games.

To analyse a game, we need to represent it with the game tree. If the number
of agents is too large, then we may need to use a machinery to provide the game
tree representation. We propose a machinery for this aim and call it process-
game. The process game is a combination of process theory and game theory
for solving games with large number of agents. We model the operation of each
agent using a process-game. Then, we run all of these process-games in parallel
to obtain the game tree.

Definition 15 Let A be a set of actions. The language L(A) is the smallest
superset of A⋆ such that

ρ, σ ∈ L(A)⇒ ¬ρ, (ρ ∨ σ),mid(σ), pre(σ), pos(σ) ∈ L(A).

Let T = (S,A,→, ↓, s0) be a transition system. For s ∈ S, the history of s,

denoted by h(s), is the trace σ ∈ A⋆ such that s0
σ
։ s. For a state (T, s) and a

formula σ ∈ L(A), we define the satisfaction (T, s) |= σ, as follows:
for σ ∈ A⋆, (T, s) |= σ iff h(s) = σ,
(T, s) |= pre(σ) iff ∃ρ ∈ A⋆(h(s) = σρ),
(T, s) |= mid(σ) iff ∃ρ, ς ∈ A⋆(h(s) = ςσρ),
(T, s) |= pos(σ) iff ∃ρ ∈ A⋆(h(s) = ρσ),
(T, s) |= (ρ ∨ σ) iff (T, s) |= ρ or (T, s) |= σ,
(T, s) |= ¬ρ iff (T, s) 6|= ρ.
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(a) husband process (b) wife process

Figure 4: Processes of Example 5

Definition 16 Let A and B be two sets of actions. The set of conditional
actions over A with conditions in B, denoted by Acon(B) is defined as follows:

for each a ∈ A, and σ ∈ L(B), [σ]a is a conditional action, i.e., [σ]a ∈
Acon(B).

There is an injective mapping from A to Acon(B) which maps each a ∈ A to
[⊤]a ∈ Acon(B).

Definition 17 (Encapsulation of Conditional Actions) Let A and B

be two sets of actions and T = (S,Acon(B),→, ↓, s0) be a transition system
over conditional actions Acon(B). The encapsulation of conditional actions of
T , written δc(T ), is the transition system (S′, A′,→′, ↓′, s′0) where
• S′ = S, A′ = A, ↓′=↓, s′0 = s0 and

• for s, t ∈ S′ and a ∈ A, s
a
→ ′t iff for some σ ∈ L(B), s

[σ]a
→ t and (T, s) |= σ.

Now we give an example to illustrate the above definitions.

Example 5 Consider Example 3. We may consider two processes, one for the
husband and one for the wife

husband := M + F (Fig. 4(a)), and
wife := [M ]R+ [M ]W + [F ]R+ [F ]W (Fig. 4(b)).

Finally, the transition system of the process δc(husband ‖ wife) is exactly the
tree of the game (Fig. 2). The process algebraic form of the tree of the game is
M.(R+W ) + F.(R +W ).

Definition 18 Let T = (S,A,→, ↓, s0). The transition system δ∪(T ) is a tran-
sition systems obtained from T by cutting some of its transitions in the following
way:

s
a
→ t and b  a then s 6

b
→ .

Assume that we are given a Γ = 〈N,H, P, (Πi)〉, which is an extensive game
with perfect information. Now we model it using process theory as a process-
game by mapping each player (in N) to a process, each terminal state to a
member of ↓, and payoff function (Π) to profit value for each member of ↓.
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Definition 19 (Process-game) Let Γ = 〈N,H, P, (Πi)〉 be an extensive game
with perfect information. A process-game model for Γ is a tuple

P = 〈(Ti)i∈N , (πi)i∈N 〉

where each Ti = (Si, Ai
con(B),→

i, ↓i, si0) is a transition systems and each

πi : A
⋆ → R

is a profit function. A1, A2, . . . , An are conditioned by B (A1
con(B), . . . , A

n
con(B))

so that
1. if i 6= j then Ai ∩ Aj = ∅,
2. B = (

⋃

i∈N Ai) ∪A1 ×A2 × · · · ×An.
and the game Γ is mapped to process-game P so that
• Si is a set of states where at each state player i ∈ N , decides to perform
one of his/her possible actions, which is determined by P for each node
on the game tree,
• Ai is a set of actions containing an internal action τ that represents pos-
sible actions of player i,
• →i⊆ Si×Ai

con(B)×Si is a set of transitions that represents what happens

when a player chooses one of his actions to do (using P ),
• ↓i⊆ Si is a set of successfully terminating states that represents terminal
states on the game tree, which can be defined by terminal histories (O(s)),
• πi : A

⋆ → R is a payoff function that represents payoff (Πi) for each action
of the player i in each subprocess (like a subgame) which is started by i.
• si0 ∈ Si is the set of initial states, which a player i can choose to start his
game from.

Now we can construct the process tree of the game using δ∪(δ
c(T1 ‖ T2 ‖ ... ‖

Tn)).
The sizes of Ai and N (set of players or agents) in Ti and πi are denoted by

|Ai|, n, and |πi| respectively. Let d = maxi(|Ai|), which is called the branching
factor of the process/game tree.

Theorem 1 Suppose a process-game P = 〈(Ti)i∈N , (πi)i∈N 〉 with

Ti = (Si, Ai
con(B),→

i, ↓i, si0)

is given. The size of the equivalent extensive representation of P, which is
denoted by |ERT |, is O

(

dn+1
)

.

Proof The size of the extensive representation is equal to the size of the tree
of the game. As players act sequentially, the maximum number nodes in the
first level of the tree is |A1|, in the second level would be |A1| × |A2| and so on.
Therefore, we have

|ERT | ≤ |A1|+ |A1| × |A2|+ · · ·+ |A1| × |A2| × · · · × |An|

≤ d+ d2 + · · ·+ dn = O
(

dn+1
)

. �
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Theorem 2 The size of a given process-game P = 〈(Ti)i∈N , (πi)i∈N 〉 with Ti =
(Si, Ai

con(B),→
i, ↓i, si0) is O(nd|B| +

∑n
i=1 |πi|).

Proof The size of P is equal to the sum of |Ti| and |πi| for all players. The
size of Ti is O(|Ai

con(B)|). Therefore,

n
∑

i=1

|Ti| ≤
n
∑

i=1

|Ai
con(B)| ≤

n
∑

i=1

|Ai| × |B| ≤ nd|B|, (1)

|P| =
n
∑

i=1

|Ti|+
n
∑

i=1

|πi|. (2)

We can conclude from equations (1) and (2) that

|P| = O(nd|B| +
n
∑

i=1

|πi|). �

Assume that all of the actions of players are in the form of a or [b]a (without
condition or just with one condition), therefore the size of B for each player is
O(d). According to Theorem 2, it is easy to see that the size of the process-
game representation would be O(nd2 +

∑n
i=1 |πi|). Based on the assumption,

the size of the process-game can be logarithmic proportional to the size of the
extensive representation (as d is the maximum number of plsyers’ actions, it is
a constant). The following equation shows this fact.

|P| = O(nd2+

n
∑

i=1

|πi|) = O(log(dn)
d2

log(d)
+

n
∑

i=1

|πi|) = O(log(|ERT |)+
n
∑

i=1

|πi|).

Extended version

We can extend the definition of process-game for extensive games with imperfect
information in the following manner.

Notation 3 Let A1 and A2 be two disjoint sets. For (a, b) ∈ (A1∪2A1)×(A2∪
2A2), we define a∪̇b :=

{a} ∪ {b} if (a, b) ∈ A1 ×A2,
{a} ∪ b if (a, b) ∈ A1 × 2A2 ,
{b} ∪ a if (a, b) ∈ 2A1 ×A2,
a ∪ b if (a, b) ∈ 2A1 × 2A2 .

Using the above notation, we modify Definition 11 over n disjoint sets of actions
in the following definition.

Definition 20 Let A1, A2, . . . , An be n disjoint sets of actions.

γ : (A1 ∪ 2A1)× (A2 ∪ 2A2)× · · · × (An ∪ 2An)→ 2A1∪A2∪···∪An
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is a communication function, which is defined as

γ(a1, a2, . . . , an) := a1∪̇a2∪̇ · · · ∪̇an

for all (a1, a2, . . . , an) ∈ (A1 ∪ 2A1)× (A2 ∪ 2A2)× · · · × (An ∪ 2An).

We may extend γ to the set of conditional actions in the manner as that given
in the following definition:

Definition 21 Let A1, A2, B be three disjoint sets of actions. γ is a communi-
cation function over conditional actions A1

con(B) and A2
con(B) for ([σ]a, [σ]b) ∈

A1
con(B) ×A2

con(B) ,which is defined as follows:

γ([σ]a, [ρ]b) := [σ ∧ ρ]γ(a, b).

This communication function helps to model simultaneous players’ moves in
extensive games with imperfect information (See Example 4).

Example 6 The process of each player in Example 4 is as given below:
wife := (H +N).(R +W ),
husband := [H ]M + [H ]F .

and γ is defined over Aw = {R,W}, Ah
con(B) = {[H ]M, [H ]F}, and B = {H}.

γ([H ]M,R), for instance, is equal to [H ]{M,R}. The transition system of the
process over γ communication function is δc(wife ‖ husband) which is exactly
the tree of the game. The tree is shown in Fig. 5, which is equivalent to Fig. 3.

Figure 5: This figure shows simultaneous moves of wife and husband in the second
level of the game and is equivalent to Fig. 3

Now, we can define the extended process-game by a tuple

P = 〈(Ti)i∈N , (πi)i∈N , γ〉

for a given extensive game with imperfect information Γ = 〈N,H, P, (Ii), (Πi)〉.
Relative to the definition of a process-game, the new element is the γ as a
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communication function over A1, A2, . . . , An which are conditioned by B. The
definition of γ is based on Ii.

In the extended version, the process/game tree is constructed with the same
method as in process-game (δ∪(δ

c(T1 ‖ T2 ‖ ... ‖ Tn))). Also, if the size of γ is
denoted by |γ|, we have

|P| =
n
∑

i=1

|Ti|+
n
∑

i=1

|πi|+ |γ|. (3)

Similar theorems as before can be proven for the extended process-game by
introducing equation (3) into those theorems.

Applications

One of the applications of process-game in representing the real social exten-
sive games in log or polylog size could be in modeling of social systems where
agents have local interaction and local competition (these two terms might be
used interchangeably, conform to the convention adopted here). A significant
approach which is founded on the assumption of local interaction is generative
social science.

Generative social science (Epstein, 2006) is an approach to study social sys-
tems via agent-based computational models. Its aim is to answer the question
as to how the regularity of the society emerges from the local interaction of
heterogeneous autonomous agents. One of the main assumptions of generative
social science is called “local interaction” (see Epstein, 2006, page 6). Accord-
ing to this assumption, agents interact with their neighbors and compete in the
social network, in which they are involved.

On the other hand, social extensive games - each player is viewed as being
involved in a local competition with the players in geographically neighboring
regions - can be modeled as a graph G (Kearns, Littman, and Singh, 2001).
In the graph-based model, each player is represented by a vertex in G. The
interpretation of edges is that each player is in a game only with the respective
neighbors in G.

In the above vein, it can be proposed that lots of social systems are based
on local interactions and competitions. The observation forwarded below stip-
ulates that in considering local interaction in the form of extensive games, the
size of the process-game can be logarithmic in comparison with the extensive
representation.

Observation 1 Suppose there is an extensive game with perfect information
and the interaction given by the graph-based model G. The maximum degree of
G is denoted by ∆. Actions of each player are limited just to the player’s neigh-
bors in G (the size of B in the equivalent process-game would be O(d∆)). Hence,
the size of the process-game representation would be O(nd∆+1+

∑n
i=1 |πi|). As
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a consequence, we have

|P| = O(nd∆+1 +
n
∑

i=1

|πi|) = O(log(dn)
d∆+1

log(d)
+

n
∑

i=1

|πi|) =

O(
d∆+1

log(d)
log(|ERT |) +

n
∑

i=1

|πi|).

As d,∆ ≪ n is a common situation in social extensive games, the size of the
process-game can be logarithmic (or polylog, depending on d and ∆) with re-
spect to the size of the extensive representation. For instance, considering

local competition property, we have ∆ = O(log(n)), then d∆+1

log(d) = O(n) =

O(log(|ERT |)). Therefore, |P| = O(log2(|ERT |) +
∑n

i=1 |πi|).

Note that local competition is a kind of local interaction. Recalling the as-
sumption of local interaction in generative social science, we can come to the
conclusion that it is obvious that in lots of social systems ∆ = O(log(n)).

There have been various representations of extensive games aiming to repre-
sent the large games compactly, such as the graphical model (Kearns, Littman,
and Singh, 2001) and MAIDs (Koller and Milch, 2003). However, our proposal
(originating from the process theory) of producing a compact representation, is
quite different. Also, we bring the advantages of process theory (in execution
and management) to the game theory environment.

Our model can be applied in management of complex systems too, but how?
Each process has its own profit and each profit is a function of some inputs.
Suppose a process game is defined with some initial values and may deliver
some equilibria path as a result (using the algorithm of the following section).
However, for a manager, it would be critical to control the path as he wants it
to be. Therefore he can try changing the inputs (so the profits will be changed,
leading also to some new equilibria path) up to getting the best one.

4. The algorithm

The notion of process-game has been explained completely in the previous sec-
tion. As strategies and agents in the process-game are the same as in its equiv-
alent extensive game, therefore the subgame perfect equilibrium (or equilibrium
path) is a solution concept for the process-game, too. Now, in this section,
we propose an algorithm to find the equilibrium path in a process-game. Al-
gorithm 1 illustrates the finding of equilibria path under the assumption that
there exists only one equilibrium path for each subprocess (like a subgame).

Remark 1 Equilibrium path in a process-game P = 〈(Ti)i∈N , (πi)i∈N 〉 is a
sequence of actions from s10 (suppose player 1 starts the entirety of the game)
to ↓n (suppose the last action is for player n).
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Algorithm 1 Depth-First Finding Equilibria

Input: A Process-Game P = 〈(Ti)i∈N , (πi)i∈N 〉
Output: Equilibria path Λ
1: for sij ← each state visited in depth-first expansion of P from s10 using

Ai
con(B) do

2: isV isited[sij]← false

3: ratPath[sij ]← ∅

4: if sij ∈↓
n then

5: isV isited[sij]← true

6: else

7: if ∀s′, a : (sij , a, s
′) ∈→i ∧ isV isited[s′] then

8: a← argmaxa πi(a.ratPath[s′]) ⊲ sij
a
→ s′ ∈→i

⊲ choose a possible action a ∈ Ai
con(B) from state sij ∈ Si which

maximizes profit of player i in the state sij
9: ratPath[sij ]← a.ratPath[s′]

10: isV isited[sij]← true

⊲ the assumption is that just one equilibrium path exists for each
subprocess

11: delete the ratPath for all s′.
⊲ by deleting ratPath for s′ the space complexity will remain linear
and ratPath is propagated toward s10 states.

12: end if

13: end if

14: end for

15: return ratPath[s10]

In line 1 of Algorithm 1, expansion takes place by virtue of conditional
actions. As in Algorithm 1 each player’s payoff value is calculated bottom-up,
it is sufficient to save players’ payoff in the subprocess equilibria at each level.
To reuse space and keep the space required by the algorithm linear, we delete
all process nodes which are expanded in that subprocess previously in line 11 of
Algorithm 1. We present below an example, meant to clarify how this algorithm
works.

Example 7 Two people select a policy that affects them both by alternately ve-
toing the available (voted) policies until only one remains. First person 1 vetoes
a policy. If more than one policy remains, person 2 then vetoes a policy. If
more than one policy still remains, person 1 then vetoes another policy. The
process continues until only one policy has not been vetoed. Suppose there are
three possible policies, X, Y , and Z, person 1 prefers X to Y to Z, and per-
son 2 prefers Z to Y to X (Osborne, 2004). Now, we want to represent this
situation through the process-game, as a compact representation proportional to
the extensive model. To define a process-game P = 〈(Ti)i∈{1,2}, (πi)i∈{1,2}, γ〉,
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we should first determine the transition system Ti. Players’ process model is
specified below, with P1 and P2 being the processes of person 1 and person 2,
respectively. T1 and T2 can be obtained by decoding these process models.

P1 := X + Y + Z

P2 := [X ]Y + [X ]Z + [Y ]X + [Y ]Z + [Z]X + [Z]Y .
Definitions of π1 and π2 are based on the players’ preferences. The payoff func-
tion of each player on each subprocess is equal to the player’s payoff over the
complete path from the root to the leaf, passing through the subprocess. This
path for each subprocess p is denoted by path(p). Therefore,

π1(p) =







2 if there is no X in the path(p)
1 if there is no Y in the path(p)
0 if there is no Z in the path(p)

,

π2(p) =







2 if there is no Z in the path(p)
1 if there is no Y in the path(p)
0 if there is no X in the path(p)

.

Actually, we define the above functions compactly. Thus, their space complexity
is much lower than when defining the function for each path separately. Now, let
us compute the Nash equilibrium. We know that the process tree is constructed
completely by δ∪(δ

c(P1 ‖ P2)). However, using Algorithm 1, the process tree is
expanded step by step to save the space. The steps of the DFS expansion of the
process tree are sketched in Fig.6.

As it is not necessary that there exist any pure equilibrium path for an
extensive game with imperfect information, this algorithm does not work, in
general, for the extended process-game. However, we can detect such a situation
in the bottom-up calculation and report “no pure equilibrium path”.

Complexity

Time complexity of Algorithm 1 in the worst case would be in the NP-complete
complexity class, like for backward induction (Nisan, Roughgarden, Tardos,
and Vazirani, 2007) (because we want to find pure Nash equilibria). Its space
complexity is linear in the size of the game, which is given as an input, i.e.,
linear in the depth of the process-game, maximum number of actions which can
be performed by a player, and the size of the payoff function.

In the extended version, if the number of simultaneous moves grows, the
extensive game will be transforming to the pure strategic form, so that in the
worst case, its space complexity would be exponential.

The algorithm is like a depth-first search and the space complexity of depth-
first search is O(hd), where h is the height of the tree and d is the branching
factor that is the maximum number of actions which a player can perform.
However, there is a bottleneck, which is caused by the size of the payoff function.
If it has exponential size, as space complexity is linear with respect to the size
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Figure 6: Graphs (a) to (g) show the steps of Algorithm 1 in finding the Nash
equilibrium for the process model of Example 7. At step (g) the rational path of the
s
1

0 (ZX) is the Nash equilibrium

of the payoff function too, it will be exponential too. Therefore, the algorithm
will be better than backward induction or using strategic form algorithms in
terms of space complexity under two circumstances. First, the size of the payoff
function is polynomial in n and d. Second, the size regarding the simultaneous
moves (size required to represent the function of γ) is polynomial in n and d (in
the case of extended version).

Theorem 3 For a given extended process-game P = 〈(Ti)i∈N , (πi)i∈N , γ〉 as
an input, the space complexity of Algorithm 1 is O(nd+ |P|).

Proof At each step of Algorithm 1, one process node is expanded and finally
collapsed when all its subnodes are visited. Therefore, when Algorithm 1 is
running, at all levels of the tree, at most one node is expanded. We know
that the height of the tree is at most n and the branching factor of the tree is d.
Therefore, the allocated space for expanding the process tree during the running
in all steps would be O(nd) in the worst case. Hence, the space complexity of
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the algorithm is O(nd+ size of input) = O(nd+ |P|). �

Actually, the process-game is a simple case of the extended process-game
with |γ| = 0. Hence, the above theorem is in a general case true for the process-
game, too.

5. Conclusions and future work

We introduced a new model to represent large extensive games in a compact
representation (especially the social extensive games with local competition).
In addition, the model is defined in algebraic terms and can be ran in parallel
mode. Further, we provide an algorithm to find the Nash equilibrium for this
representation having linear space complexity, with respect to the size of the
input.

As we mentioned, one of the applications of the model can be in management
of complex systems. However, there is no software to facilitate the management
process for the manager. Therefore, the next step of the work may be develop
a software to approach this particular goal.
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