Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this research is to study the trend of pedestrian lower extremity injuries during vehicle-pedestrian collisions. Methods: In this study, pedestrian’s age, collision angle and pedestrian’s position are considered influencing factors. Nine experiments using a novel lower extremity mechanical model are designed with the orthogonal experiment method. Results: Under the same collision angle, collisions in the left and right positions caused more serious tibia injuries than the middle position. As for the collision angle, the tibial injury at +45° is more significant than the tibial injury at −45°, and the injury of oblique collisions is slightly greater than that at 0°. Moreover, tibial injury is more sensitive to research variables than femoral injury. When the collision angle and position are changed, the difference ratio of tibia stress is by 483.2% higher than that of femur stress. The axial force and bending moment of the quadriceps tendon in the left-position collision reach peak values, which are 3.83 kN and 165.98 Nm, respectively. The peak quadriceps tendon axial force is captured with the collision angle of −45°, and the peak quadriceps tendon bending moment is obtained with a collision angle of +45°. Conclusions: The effects of differences in impact position and angle on lower extremity injury in the elderly were analyzed, and the results of this study can be used as a reference for research on lower extremity protection.
Czasopismo
Rocznik
Tom
Strony
95--108
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, China.
- Tianjin Key Laboratory of Power Transmission and Safety Technology for New Energy Vehicles, Hebei University of Technology, Tianjin, China.
autor
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, China.
autor
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, China.
autor
- China FAW Group Corporation,Changchun, China.
autor
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, China.
Bibliografia
- [1] ASHTON S.J., Factors associated with pelvis and knee injuries in pedestrians struck by the fronts of cars, SAE Tech. Pap., 1981, DOI: 10.4271/811026.
- [2] BUNKETORP O., ROMANUS B., HANSSON T., ALDMAN B., THORNGREN L., EPPINGER R.H., Experimental study of a compliant bumper system, SAE Tech. Pap., 1983, DOI: 10.4271-831623.
- [3] CHEN J.Q., CHENG R.J., LAN F.C., ZHOU Y.J., Analysis of lower limb injury mechanism of an average Chinese pedestrian lower limb FE model in lateral impact, Int. J. Veh. Saf., 2020, 11 (4), 330, DOI: 10.1504/IJVS.2020.111526.
- [4] HUANG J.H., ZHENG W.Q., Optimization design of vehicle front-end structure for pedestrian protection lower leg, Mechanical Engineering and Automation, 2018, 6, 85–87.
- [5] JIANG X., YANG J., WANG B., ZHANG W., An investigation of biomechanical mechanisms of occupant femur injuries under compression-bending load, Chinese Journal of Theoretical and Applied Mechanics, 2014, 46 (3), 465–474, DOI: 10.6052/0459-1879-13-282.
- [6] KAJZER J., MATSUI Y., ISHIKAWA H., SCHROEDER G., BOSCH U., Shearing and bending effects at the knee joint at low-speed lateral loading, SAE Tech. Pap., 1999, DOI: 10.4271/1999-01-0712.
- [7] KAJZER J., SCHROEDER G., ISHIKAWA H., MATSUI Y., BOSCH U., Shearing and bending effects at the knee joint at high speed lateral loading, SAE Tech. Pap., 1997, DOI: 10.4271/973326.
- [8] KERRIGAN J., SUBIT D., UNTAROIU C., CRANDALL J.R., Pedestrian lower extremity response and injury: a small sedan vs. A large sport utility vehicle, SAE International Journal of Passenger Cars-Mechanical Systems, 2008, 1 (1), 985–1002, DOI: 10.4271/2008-01-1245.
- [9] KLEIN K.F., HU J., REED M.P., SCHNEIDER L.W., RUPP J.D., Validation of a parametric finite element human femur model, Traffic Inj. Prev., 2017, 18 (4), 420–426, DOI: 10.1080/15389588.2016.1269172.
- [10] KLINICH K.D., SCHNEIDER L.W., Biomechanics of pedestrian injuries related to lower extremity injury related to lower extremity injury assessment tools: a review of the literature and analysis of pedestrian crash database, 2003.
- [11] LIU X.R., XIAO S., SUN X.X., Research on lower extremity injury characteristics of elderly pedestrians under different impact loads, Int. J. Crashworthines, 2022, 27 (5), 1287–1297, DOI: 10.1080/13588265.2021.1926846.
- [12] MCCALDEN R.W., MCGEOUGH J.A., BARKER M.B., COURT-BROWN C.M., Age-related changes in the tensile properties of cortical bone. The relative importance of changes in porosity, mineralization, and microstructure, J. Bone Joint Surg. Am., 1993, 75 (8), 1193–1205, DOI: 10.2106/00004623-199308000-00009.
- [13] MO F., AMOUX P.J., AVALLE M., SCATTINA A., SEMINO E., MASSON C., Incidences of various passenger vehicle front-end designs on pedestrian lower limb injuries, Int. J. Crashworthines, 2015, 20 (4), 337–347, DOI: 10.1080/13588265.2015.1012879.
- [14] MO F.H., DUAN S.Y., JIANG X., XIAO S., XIAO Z., SHI W., WEI K., Investigation of occupant lower extremity injures under various overlap frontal crashes, Int. J. Auto Tech.-Kor., 2018, 19 (2), 301−312, DOI: 10.1007/s12239-018-0029-9.
- [15] MO F., LI F., BEHR M., XIAO Z., ZHANG G., DU X., A lower limb-pelvis finite element model with 3D active muscles, Ann. Biomed. Eng., 2018, 46, 86–96, DOI: 10.1007/s10439-017-1942-1.
- [16] MO F., LI J., DAN M., LIU T., BEHR M., Implementation of controlling strategy in a biomechanical lower limb model with active muscles for coupling multibody dynamics and finite element analysis, J. Biomech., 2019, 91, 51–60, DOI: 10.1016/j.jbiomech.2019.05.001.
- [17] PEDEN M., SCURFIELD R., SLEET D., MOHAN D., HYDER A.A., JARAWAN E., MATHERS C., Word report on road traffic injury prevention, WHO, 2004.
- [18] SAADÉ J., CUNY S., LABROUSSE M., SONG E., CHAUVEL C., CHRÉTIEN P., Pedestrian injuries and vehicles-related risk factors in car-to-pedestrian frontal collisions, Proceedings of the 2020 IRCOBI Conference Proceedings, Munich, IRCOBI, 2020, 278–289.
- [19] TERESIŃSKI G., MADRO R., Knee joint injuries as a reconstructive factors in car-to-pedestrian accidents, Forensic. Sci. Int., 2001, 124 (1), 74–82, DOI: 10.1016/S0379-0738(01)00569-2.
- [20] TIAN T., XIAO S., YOU S., ZHANG H., ZHANG L., MO F., Effect of hip flexion angle on lower limb injuries of occupants in autonomous vehicle crashes, Comput. Method Biomec., 2022, 1–14,DOI: 10.1080/10255842.2022.2162338.
- [21] TOLEA B., ANTONYA C., BELES H., Assessment of the injury severity of the pedestrian lower limbs at the collision with a vehicle, Proc. of the Annual Session of Scientific papers “IMTOradea 2015”, 2015, 14, 189–192, DOI: 10.15660/AUOFMTE.2015-1.13095.
- [22] WANG B.Y., YANG J.K., OTTE D., WANG F., Pedestrian lower extremity injury risk in car-pedestrian collisions, Journal of Virbation and Shock, 2016, 35 (23), 1–5, DOI: 10.13465/j.cnki.jvs.2016.23.001.
- [23] XIAO S., QIE Y., HUANG J., Influence of restraint load on injury biomechanics in frontal impact based on dummy test, IJST-T. Mech. Eng., 2020, 44, 1065–1075, DOI: 10.1007/s40997-019-00311-1.108 S. XIAO et al.
- [24] XIAO S., YOU S., TIAN T., WU J., ZHANG H., Investigation of lower limb injury under different contact stiffness for drivers during frontal crash, Acta Bioeng. Biomech., 2022, 24 (2), 83–93, DOI: 10.37190/ABB-02057-2022-02.
- [25] YAN L., ZHANG W., CAO L., TANG J., DAI H., ZHANG K., Design of centroid parameters of dummy heads models based on chinese anthropometric dimensions, China Mechanical Engineering, 2018, 29 (07), 787–793, DOI: 10.3969/j.issn.1004-132X.2018.07.006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c07c353c-67d8-4a04-8f9b-b65c0ff4b659