PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of exhaust gas on detonation propensity of a mixture of carbon monoxide, hydrogen and air

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A detonation is the strongest form of all gas explosions. The ease with which a flammable mixture can be detonated (detonability) commonly and traditionally is classified by a detonation cell width λ and an ignition delay time behind the detonation leading shock τ. Additionally, two more parameters were proposed 3 years ago – χ and RSB, which inform about regularity of a detonation structure. The problem of a detonation is significant in industry, in particular in power engineering, where restricted emission standard impose to introduce hydrogen-rich fuels, such as syngas. The most possible initiation of a detonation in industrial conditions is deflagration to detonation transition (DDT), where a deflagration under some conditions (obstacles, confinement, etc.) accelerates and a transition to a detonation takes places. In industry, this acceleration of a flame may progress in initially smoke-filled space. The goal of this paper is to analyse influence of exhaust gas on detonation propensity of a mixture of carbon monoxide and hydrogen. The analysis concerns the detonation cell width λ, ignition delay time τ, RSB and χ parameters. The composition of exhaust gas is calculated by setting it to a state of chemical equilibrium. Combustion temperature influence on exhaust gas composition is assessed. Species, which have the strongest influence on detonability, are assessed. Computations are performed with the use of Cantera tool.
Twórcy
autor
  • Warsaw University of Technology, Institute of Heat Engineering Nowowiejska Street 21/25, 00-665 Warsaw, Poland tel. +48 22 234 52 66, +48 22 234 52 26
  • Warsaw University of Technology, Institute of Heat Engineering Nowowiejska Street 21/25, 00-665 Warsaw, Poland tel. +48 22 234 52 66, +48 22 234 52 26
Bibliografia
  • [1] Austin, J. M., Shepherd J. E., Detonation in hydrocarbon fuel blends, Combustion and Flame, No. 132, pp. 79-90, 2003.
  • [2] Fickett, W., Davis W. C., Detonation, University of California Press, Berkeley – Los Angeles – London 1979.
  • [3] Gavrikov, A. I., Efimenko, A. A., Dorofeev S. B., A Model for Detonation Cell Size Prediction from Chemical Kinetics, Combustion And Flame, No. 120, pp. 19-33,2000.
  • [4] Goodwin, D. G., Moffat H. K., Speth R. L., Cantera: An object- oriented software toolkit for chemical kinetics, thermodynamics, and transport processes, http://www.cantera.org, Version 2.1.2, 2015.
  • [5] Konnov A. A., Detailed reaction mechanism for small hydrocarbons combustion, Release 0.5, available at http://homepages.vub.ac.be/~akonnov/, 2000.
  • [6] Radulescu, M. I., Borzou, B., Evaluation of hydrogen, propane and methane-air detonations instability and detonability, International Conference of Hydrogen Safety, 2013.
  • [7] Radulescu, M. I., Sharpe, G. J., Bradley D., A universal parameter quantifying explosion hazards, detonability and hot spot formation: χ number, ISFEH7 Proceedings of the Seventh International Seminar, 2013.
  • [8] Saif, M., Wang, W., Pękalski, A., Levin, M., Radulescu, M. I., Chapman-Jouguet deflagrations and their transition to detonation, Proceedings of the Combustion Institute, Seoul 2016.
  • [9] Shock & Detonation Toolbox, Graduate Aerospace Laboratories of the California Institute of Technology, Caltech, http://www2.galcit.caltech.edu/EDL/public/cantera/html/SD\_Toolbox.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c07a3883-4700-4d6a-baa8-a44a391d231c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.