PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Strain energy method for determining dynamic yield stress in Taylor’s test

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a theoretical method for determining dynamic yield stress of metals. The method is based on conversion of the part initial kinetic energy of a metal rod striking a rigid target into the energy of elastic and plastic-strain deformation at selected period ts. By means of this method, a theoretical simple algebraic formula has been derived for determining the dynamic yield stress of metals loaded by the Taylor direct impact experiment (Taylor DIE). This formula gives the results comparable with experimental data.
Rocznik
Strony
499--511
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
  • Military University of Technology Faculty of Mechatronics and Aviation Sylwestra Kaliskiego 2, 00-908 Warszawa, Poland
  • Military University of Technology Faculty of Mechatronics and Aviation Sylwestra Kaliskiego 2, 00-908 Warszawa, Poland
Bibliografia
  • 1. Taylor G.I., The use of flat-ended projectiles for determining dynamic yield stress I. Theoretical considerations, Proceedings of the Royal Society of London, Series A, 194(1038): 289–299, 1948, doi: 10.1098/rspa.1948.0081.
  • 2. Whiffin A.C., The use of flat-ended projectiles for determining dynamic yield stress II. Tests on various metallic materials, Proceedings of the Royal Society of London, Series A, 194(1038): 300–322, 1948 doi: 10.1098/rspa.1948.0082.
  • 3. Lee E.H., Tupper S.J., Analysis of plastic deformation in a steel cylinder striking a rigid target, Journal of Applied Mechanics, Transactions of ASME, 21: 63–70, 1954.
  • 4. Hawkyard J.B., Eaton D., Johnson W., The mean dynamic yield strength of copper and low carbon steel at elevated temperatures from measurements of the mushrooming of flat-ended projectiles, International Journal of Mechanical Sciences, 10(12): 929–948, 1968, doi: 10.1016/0020-7403(68)90048-9.
  • 5. Hawkyard J.B., A theory for the mushrooming of flat-ended projectiles impinging on a flat rigid anvil, using energy consideration, International Journal of Mechanical Sciences, 11(3): 313–333 1969, doi: 10.1016/0020-7403(69)90049-6.
  • 6. Jones S.E., Muadlin P.J., Foster J.C., An engineering analysis of plastic wave propagation in the Taylor test, International Journal of Impact Engineering, 19(2): 95–106, 1997, doi: 10.1016/S0734-743X(96)00020-6.
  • 7. Lu G., Wang B., Zhang T., Taylor impact test for ductile porous materials – Part 1: theory, International Journal of Impact Engineering, 25(10): 981–991, 2001, doi: 10.1016/S0734-743X(01)00027-6.
  • 8. Wang B., Zhang T., Lu G., Taylor impact test for ductile porous materials – Part 2: experiments, International Journal of Impact Engineering, 28(5): 499–511, 2003, doi: 10.1016/S0734-743X(02)00105-7.
  • 9. Zhang E., Wang B., On the compressive behavior of sintered porous coppers with low to medium porosities – Part 1: Experimental study, International Journal of Mechanical Sciences, 47(4–5): 744–756, 2005, doi: 10.1016/j.ijmecsci.2004.12.011.
  • 10. Włodarczyk E., Sarzyński M., Analysis of dynamic parameters in a metal cylindrical rod striking a rigid target, Journal of Theoretical and Applied Mechanics (JTAM), 51(4): 847–857, 2013.
  • 11. Janiszewski J., Engineering materials testing in conditions of dynamic load [in Polish], WAT, Warsaw 2012.
  • 12. Włodarczyk E., Sarzyński M., Experimental analysis of density and compressive strain of porous metal with the use of Taylor test, Archives of Mechanics, 66(4): 245–256, 2014.
  • 13. Rakhmatulin H.A., Demianov Yu.A., Strength under intensive momentary loads [in Russian], Moscow 1961.
  • 14. Cristescu N., Dynamic plasticity, North – Holland Publishing Company, Amsterdam 1967.
  • 15. Włodarczyk E., Terminal ballistics of bullets [in Polish], WAT, Warsaw 2006.
  • 16. Kolsky H., Douch L.S., Experimental studies in plastic wave propagation, Journal of the Mechanics and Physics of Solids, 10(3): 195–223, 1962, doi: 10.1016/0022-5096(62)90038-8.
  • 17. Zukas J.A., Nicholas T., Swift H.F., Greszczuk L.B., Curran D.R., Impact dynamics, Wiley, New York 1982.
  • 18. Higashi K., Mukai T., Kaizu K., Tsuchida S., Tanimura S., The microstructural evolution during deformation under several strain rates in a commercial 5182 aluminum alloy, Journal de Physique IV France, 01(C3): C3-347–C3-352, 1991, doi: 10.1051/jp4:1991350.
  • 19. Zukas J.A., High Velocity Impact Dynamics, Wiley, New York 1990.
  • 20. Julien R., Jankowiak T., Rusinek A., Wood P., Taylor’s test technique for dynamic characterization of materials: application to brass, Experimental Techniques, 40(1): 347– 355, 2016.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c077e9e3-3c99-474f-87c8-79a9fb0af346
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.