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Abstract 

 
The article discusses possibilities of implementing a neural network in  
a parallel way. The issues of implementation are illustrated with the 
example of the non-linear neural network. Parallel implementation of 
earlier mentioned neural network is written with the use of OpenCL 
library, which is a representative of software supporting general-purpose 
computing on graphics processor units (GPGPU). The obtained results 
demonstrate that some group of algorithms can be computed faster if they 
are implemented in a parallel way and run on a multi-core processor 
(CPU) or a graphics processing unit (GPU). In case of the GPU, the 
implemented algorithm should be divided into many threads in order to 
perform computations faster than on a multi-core CPU. In general, 
computations on a GPU should be performed when there is a need to 
process a large amount of data with the use of algorithm which is very well 
suited to parallel implementation. 
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1. Introduction 
 

The computers are now an integral part of life of many people. It 

is hard to mention all the fields in which computers have been 

applied. They have contributed to the enormous progress because 

they are capable of performing lots of millions of calculations per 

second. With the use of this mighty computing power, a great deal 

of applications have been created to make our everyday lives 

easier. It is just the software development which has contributed to 

such a large development of general purpose processors (CPU - 

Central Processing Unit). More and more complex applications 

consume more computer resources. Over the last few decades one 

can see an extremely large growth in the performance efficiency 

of general-purpose processors. In the sixties, one of the founders 

of Intel observed that the number of transistors in a chip doubles 

about every 24 months. Later, this observation was called Moore's 

Law. In addition to the number of transistors the frequency of 

processors has been considerably increased . In the recent years 

one has seen a slowdown in increasing the operating frequency of 

processors, because for higher and higher frequencies, it is more 

difficult to construct and cool the processor. In order to further 

increase the performance of the processors, one decided to 

introduce processors that contain more than one core. 

Parallely with the development of processors, the graphics cards 

were also developed (GPU - The Graphics Processing Unit), in 

which a lot of processing units were used. It is one of the few 

characteristics common to the construction of the GPU and CPU. 

In the GPU, a number of cores performing calculations can be 

counted in thousands, while in the CPU there are up to the tens. 

Despite the increased amount of processing elements, high 

performance of graphics cards can only be achieved when in the 

calculations a lot of threads are used (hundreds, thousands). 

Until recently, the creation of tools that support the development 

of multi-threaded software was focused around the CPU. Only a 

few years ago a common standard was introduced to assist 

creation of applications to be run on the GPU - OpenCL. Since 

that time, many implementations of the same problem for the CPU 

and GPU have been created in order to compare their 

performance. One of them are neural networks which is the 

problem very well suited for parallelization. In the process of 

learning and testing neural network there are a lot of the same 

operations performed, so one can share the calculations on 

multiple threads. 

The another advantage of neural networks, in the addition to 

easiness of writing parallel implementations, there is a possibility 

of solving many of the problems through network learning. One of 

the oldest applications of neural networks is the pattern 

recognition. In this area, a particular property of neural network 

was used, which consisted in the fact that they are able to find 

relationships between the learning data, and then on this basis, the 

network is able to classify previously unknown data.  

The article describes the implementation of a non-linear neural 

network using OpenCL library (Chapter 5). In paper [3] was 

described an implementation of two other neural networks: 

Kohonen and LVQ. While choosing neural networks one was 

guided by learning methods of various neural networks. Among the 

algorithms of adapting selected neural networks one can distinguish 

two types of learning: with the teacher and self-learning. 

During writing an implementation of algorithms which are 

executed by multiple threads, it is necessary to take into account 

the limitations imposed on the programmer by the existing 

hardware. Dismissal of hardware limitations can lead to a situation 

that, despite of the fact that the algorithm is executed by multiple 

threads, the execution time is longer than for sequential 

algorithms. The limitations that should be considered while 

implementing an algorithm which is designed to perform on the 

graphics card, are presented in chapter six. 

During creation of a neural network implementation, the 

emphasis was put on obtaining high performance in GPU 

computing. For non-linear neural networks, the received results 

and a comparison of results obtained from sequential and multi-

threaded implementations, written in C ++ programming 

language, are presented in chapter seven. Test results for the other 

two neural networks are described in paper [3]. 

 

2. General purpose computations on GPU 
 

For the first time term GPGPU (General-Purpose computation 

on Graphics Processing Units) was introduced by Mark Harris in 

2002, who noticed the tendency towards using computation 

potential of graphics processors for computations which are not 

connected with showing graphics on the computer monitor.  

 

 

 
 

Fig. 1.  Difference in floating-point capabilities of CPU and GPU. Source: [4] 
 

Calculations began to move from general purpose processors to 

graphics processors when it turned out that they exceeded the 

performance of the CPU. During last decade the difference still 

grows (Fig. 2). 
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The reason for discrepancy in floating-point computing 

capabilities between the CPU and the GPU is that the GPU is 

specialized in processing the large amount of highly paralleled 

data. For this reason the GPU was designed in order that more 

transistors could be assigned to process data and not to cache data 

and flow control [4]. 

 

3. OpenCL 
 

In 2008 was published the first specification of OpenCL 

framework [1, 2, 5]. It is a programming platform destined to 

perform computations on heterogeneous platform which consists 

of different types of computing units (coprocessors) (i.e. GPU, 

CPU). OpenCL provides a low-level modelling of hardware and 

framework that supports the creation of applications. Before the 

advent of OpenCL, it was necessary to use the proprietary 

software provided by manufacturer of particular computing unit. 

With the appearance of OpenCL, the software designed with the 

use of this technology can be launched on computing units from 

different manufacturers without changing the code. 

OpenCL specifications assumes the division of a program into 

two parts: 

 one program executed on host side, 

 the other program executed on one or more computing units 

(OpenCL devices), which are divided into Compute Units, and 

further to the Processing Elements. 

The computing code (called kernel) executed on the 

coprocessor-side is written in OpenCL C, which is a subset of ISO 

C99. The application which uses OpenCL sends the list of 

commands (kernels) from the host to the coprocessors to perform 

the calculations. 

 

4. Artificial neural networks 
 

An inspiration to create artificial neural networks is the human 

brain, which is considered as the most complicated human organ. 

The brain weights about 1,5 kilos and its volume and surface is 

1400 cm3, and 2000 cm2 respectively. The number of connections 

between the cells is estimated at 1015. The speed of human brain is 

estimated at 1018 operations per second [6] (for comparison, the 

theoretical performance of the fastest computer in the world (Titan 

- Cray XK7) is estimated at 27112.5 TFlop/s). 

The first formal description of a nerve cell came into existence 

in 1943, and its author was Pitts McCulloh [7]. Over the next few 

decades, many neural network models were created. An artificial 

neural network is a very simplified model of human brain. It 

consists of tens to hundreds of processing elements. A single 

processing element is called a neuron. But it is not as complex as  

a real neuron, basically it is a very primitive model of real neuron. 

Neurons are tied together with links which have a parameter 

(weight), which is modified during the learning process. The 

connection topology and organization of neurons in larger groups 

form a neural network program, whose task is to solve the 

problems assigned to artificial neural network. 

 

General properties of artificial neural networks 

 

The primary criterion by which neural networks can be divided 

is the division into a network with one-way connections (called 

feedforward) and network with feedback loops (e.g. Hopfield 

network). The Neural networks with feedback loops are more 

often used in research than in practice [6]. 

One of the most important feature of the neural networks is their 

ability to adapt themselves and self-organize. This characteristic is 

used for most practical applications [7, 8]. It allows for the 

replacement of some algorithm by a neural network, which 

automatically finds the solution to the assigned problem. Finding a 

solution may take from a few to many thousands of iterations. The 

process of finding automatic solution search is called network 

learning. Another important advantage of neural networks is their 

reduced sensitivity to the failure of individual network elements. 

But the most important advantage of neural networks in the view 

of this article is the ability to work in a parallel way. Today's 

supercomputers consist of multiple cores which allow to 

accelerate the operations of neural network several times. 

 

5. Parallel implementation of nonlinear neural 
network 

 

In this chapter the parallel implementation of nonlinear neural 

network will be presented. It will be shown which structural 

elements can be executed in a parallel way on the GPU and, where 

it is necessary, to synchronize the results of calculations. Then, the 

selected structures of neural network are mapped onto the objects 

used in OpenCL library. 

 

Funcionalities 

 

The implementations allow to setup the following parameters: 

 a number of layer: 1 - 3, 

 a number of neurons in the layer, 

 a backpropagation learning method with the possibility of 

simultaneous validation. 

 

Nonlinear neuron 

 

The basic structural unit of multilayer perceptron is a non-linear 

neuron. At the time of reception of input signals by the neuron, the 

stimulation of neuron is calculated. In practice, the distance 

between the input vector and a vector a single neuron's weights is 

calculated with the use of selected metrics. In this case, the scalar 

product is used. 

The distance between individual elements of the input vector 

and vector of a neuron's weights can be calculated by n 

independent threads, where n is the number of neuron inputs. This 

is an example of SIMD unit, which executes the same instructions 

for different data. The stimulation of neuron (e) is calculated by 

summing up the results of individual threads. In the next step the 

response of neuron is calculated based on activation function 

(sigmoid) and stimulation of neuron. 

 

 
 

Fig. 2.  Parallel implementation of neuron's response calculation 

 

Each thread which calculates the distance between the elements 

of vectors in OpenCL nomenclature is called work-item. In the 

case when the calculation of stimulation of neuron is assigned to 

too few work-items, one work-item executes calculation for more 

than one input of neuron. The input data are collected by the work 
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item from the global memory. With this approach to the 

calculation of neuron output, it is necessary to share the results of 

calculations. For this purpose, the local memory, which is built 

into each Compute Unit of graphics card is used. All work-items 

involved in calculation of neuron stimulation are member of 

workgroup. Work-items with a local number 0 and 1 are 

responsible for calculating the sum of results from each thread W. 

Response of neuron is calculated and written into the global 

memory by work-item with a local number 0. 

 
Layer of neurons 

 

The largest structural element of neural network is a layer. 

Stimulations of neurons from the layer m are passed to a layer 

with number m+1. The layer consists of unlimited number of 

neurons, and the response of each neuron is calculated in a parallel 

way. Note, however, that too many layers, and neurons in the 

layer can contribute to some problem in finding a solution of the 

assigned problem.  

The basic assumption in the implementation of a multilayer 

perceptron is the ability to use up to three layers, because more of 

them will not help to solve the problem and increase the amount of 

necessary calculations to be perform. There is no restriction on the 

number of parallely executed neurons in the layer. Each neuron is 

a workgroup in the OpenCL nomenclature. In one graphics card 

Compute Unit up to forty workgroups can be performed (ten for 

each unit vector). OpenCL standard itself does not specify whether 

creating, for example, sixteen workgroups, they will be executed 

in the same Compute unit, or they will be splitted into four groups 

containing four elements and will be executed in different 

Compute Units, thereby providing a parallel calculation of all 

neurons. 

 

 
 

Fig. 3.  Parallel calculation of each neuron's response 

 

The calculation of neural network output requires the 

synchronization of the results in a couple of points. The points of 

synchronization of nonlinear neural network ale located after each 

layer. To synchronize the calculations is used in-order queue, 

which ensures that the next kernel will not be executed until the 

previous one has been completed. 

 

Network learning - backpropagation algorithm 

 

After calculating the network response to the currently presented 

input vector, change of weight vector for each neuron across all 

layers is calculated. Modification of n neuron weights can be 

performed by n threads (work-items) where n is the number of 

neuron inputs. The same n threads simultaneously calculate the 

error at the input of the neuron, and the result is stored in the 

global memory. If the number of work-items is fewer than the 

number of neuron inputs, then one work-item modifies more than 

one neuron weight. 

 

6. Limitations 
 

The approach to parallelization of the neural network presented 

in the preceding paragraphs has several limitations: 

 The number of work-items per one neuron: 256. The limitation 

means that, in some cases (the maximum number of elements in 

the input vector is less than or equal to 256) only one thread 

performs the calculations for a single input. 

 The total number of work-items possible to start in graphics 

card: 16777216. 

 The available global memory: 3GB. In the case of very large 

training data sets, it is impossible to load all the training vectors 

into graphics card memory. 

 Only a certain number of workgroups can be performed in the 

parallel way. Theoretically, the maximum number of 

workgroups executed in parallel can be estimated as follows: 32 

Compute Units  4 vector units = 128 workgroups (assuming 

that one workgroup is made up of 64 work-items). Increasing 

the number of work-items in a workgroup causes that fewer 

workgroups can be executed in a parallel way. 

 

7. Performance tests of neural network 
 

In this chapter, performance of implemented neural network 

algorithm will be presented. It will be checked how the execution 

time of the algorithm changes, which depends on the size of the 

input data and the number of neurons in each layer. The 

performance of the implemented algorithm intended to run on the 

graphics card, will be compared to the implementation of the same 

neural network in C++ programming language (the parallel and 

sequential algorithm using OpenMP library). It will also be shown 

how the performance of the implemented algorithm looks in 

comparison with the library built in Matlab - Neural Network 

Toolbox (in the tests only one processor core will be used). 

The following table lists the calculation accelerators which are 

used for testing of implemented algorithms. Some identifiers (first 

column) which will be used in subsequent sections were assigned 

to devices. 

 
No. Name of calculation accelerator Programming language/library 

1 Intel Core i7 3770K C++ C++ 

2 Intel Core i7 3770K, C++ OpenMP C++/OpenMP 

3 Intel Core i7 3770K, Intel OpenCL C++/Intel OpenCL 

4 Intel HD 4000, Intel OpenCL C++/Intel OpenCL 

5 Radeon HD7970, AMD OpenCL C++ AMD OpenCL 

6 Matlab, Neural Network Toolbox not applicable 

 

Various size of input data 

 

The following table summarizes the execution times for 

different sizes of the input data (image n  n pixels). In the table 

description there is an entry: {x,y,z}. It means the number of 

neurons in each layer, starting from layer number one. In any case, 

the neural network was tested by five thousand epochs. 

 
Tab. 1. Nonlinear neural network built from three layers: {32, 16, 8}. Number of 

epochs: 5000. Learning coefficient: 0.2. Results given in seconds 

 

n x n 1 2 3 4 5 6 

16x16 7 8 9,2 14 33 11 

32x32 10 9 10 19 40 14 

64x64 24 12 13 27 48 33 

128x128 70 23 34 54 69 121 

256x256 256 96 156 122 45 699 

512x512 1010 432 353 278 80 2589 

1024x1024 3985 1712 892 647 140 10176 

 

The results presented in the above-mentioned table, indicate that 

the implementation of a neural network which runs on general 

purpose processor is executed from two up to four times faster 

than on graphics cards. Increasing the size of the input image 

above 128128 causes the program to execute faster on the 

graphics card than on a general purpose processor. There is also an 

evident difference in performance between the two graphics cards 

because the card Intel HD 4000 has many fewer resources to 

perform calculations than the AMD Radeon 7970. 
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Fig. 4.  Nonlinear neural network built out of three layers: {32, 16, 8}.  

Number of epochs: 5000. Learning coefficient: 0,2 

 

The initially poor performance of AMD graphics card is caused 

by the fact that the number of work-items in one workgroup 

(computing output of one neuron) is much less than the minimum 

recommended size of the workgroup (recommended size of 

workgroup is a multiple of 64, but not more than 256). The best 

performance is achieved when one workgroup consists of exactly 

256 working-items. It is worth noting that the computation time 

for an image of size 256256 pixels is only five seconds worse 

than for the image of size 3232 pixels. This shows how important 

is the size of the workgroup. 

 

Various size of neural network layer 

 

In the previous section is shown that the graphics card has some 

problems with the images of a smaller size. The purpose of this 

test is to check whether an implementation in graphics card can 

gain an advantage over a multi-threaded implementation intended 

to run in a general purpose processor, in case the size of neural 

network is increased. Tests are performed for two sizes of the 

input images: 

 the smallest of the tested input images,  

 the image for which the execution time of sequential 

implementation is close to the execution time in the GPU. 

 
Tab. 2. Nonlinear neural network built from three layers. Input image size: 1616. 

Number of epochs: 5000. Learning coefficient: 0.2. Results given in seconds 

 

{x,y,z} 1 2 3 4 5 6 

{32, 16, 8} 7 10,6 9,3 14 32 12 

{64, 32, 8} 8 10,1 9,7 16 33 13 

{128, 64, 8} 12 11 12 21 41 15 

{256, 128, 8} 23 14 16 32 45 23 

{512, 256, 8} 56 23 26 66 57 56 

{1024, 512, 8} 240 75 78 175 46 174 

{2048, 1024, 8} 1049 334 747 1150 120 780 

 
Tab. 3. Nonlinear neural network built from three layers. Input image size: 128x128. 

Number of epochs: 5000. Learning coefficient: 0.2. Results given in seconds 

 

{x,y,z} 1 2 3 4 5 6 

{32, 16, 8} 71 24 31 20 70 111 

{64, 32, 8} 133 42 61 27 30 261 

{128, 64, 8} 263 45 141 41 43 646 

{256, 128, 8} 530 130 279 70 69 1261 

{512, 256, 8} 1081 499 546 84 93 2541 

 

The results presented in Figs. 5 and 6 show that despite of 

unfavorable workgroup size, the implementation of neural network 

intended to run on a graphics card can gain advantage over the 

multi-threaded C++ implementation only when neural network is 

sufficiently large. However, during the test a negative effect of a 

large neural network was observed. Neural networks of size {256, 

128, 8} (and smaller) were able to learn to recognize the training set. 

In contrast, the neural network of size {512, 256, 8} and bigger was 

not able to learn at all to recognize the training set. 

 

 
 

Fig. 5.  Nonlinear neural network built from three layers. Input image size: 1616. 

Number of epochs: 5000. Learning coefficient: 0.2 

 

 

 
 

Fig. 6.  Nonlinear neural network built from three layers. Input image size: 128128. 

Number of epochs: 5000. Learning coefficient: 0.2 

 

 

Access to global memory 

 

An access to global memory on the AMD Radeon HD 7970 

graphics card is accomplished through the twelve channels. Each 

channel consists of a number of memory banks. If two work-items 

reads data from memory area to which access is through two 

different channels, then the reading is in parallel. If from the 

selected memory area data is read through the same channel (by 

work-items from two different workgroups), then the reading is 

serialized, because there is a conflict of channels. In order to avoid 

conflicts of channels, work items should read data from the 

memory cells which are adjacent to each other and belonging to 

the same channel. 

In the section Various size of input data the results of tests for 

optimized kernels on account of the access to the global memory 

are presented. The results of tests performed using the first version 

of the kernels were worse, especially for images larger than 

128128 pixels. 

 
Tab. 4. Comparison of the results for two implementations of kernels.  

The results are given in seconds 

 

n  n v. 1 v. 2 

16x16 24 33 

32x32 36 40 

64x64 53 48 

128x128 47 69 

256x256 493 45 

512x512 498 80 

1024x1024 508 140 

 

 

8. Conclusion 
 

The main target of the article is to carry out performance tests 

which compare three implementations of one of the chosen neural 
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networks. The first two implementations are destined to run on  

a general purpose processor. They differ only in the number of used 

cores of processor (one core or all the available processor cores). 

The last implementation is destined to run on graphics processors. 

The significant part of the paper is devoted to implementation and 

tests of non-linear neural network. During the implementation it is 

noted that certain structural elements of neural network are 

repeating (neuron, layer). Due to this fact, some parts of the code 

can be used multiple times in different types of neural network. This 

phenomenon has been used to implement two other types of neural 

networks, Kohonen and LVQ. The details of the implementation 

and performance tests are presented in the paper [3]. 

The implementation of neural network learning algorithms for 

GPU is not a difficult task. A programming language used to write 

kernels is very similar to C language, and additionally, the Intel 

and the AMD corporations delivered programs which check 

syntax errors. Some difficulties in the implementation appear only 

when one wants to achieve high performance of the implemented 

algorithms. During tests of neural networks, it was noted that for 

data of big size, computations on graphics cards are much slower 

than on quad-core processor. The time of computations of 

particular kernels can be checked due to a diagnostic tool (called 

the profiler) which is delivered by the AMD corporation. The 

implementation's bottleneck was the fact that global memory of  

a graphics card was hard accessible. In a code optimization  

a programming guide issued by AMD corporation was very 

helpful. In the programming guide one can find hints concerning 

the implementation, which differ depending on an architecture of 

an applied graphics card. 

The conducted performance tests show that the graphics card 

gains an advantage over a multi-core processor in the two cases. 

The first one appears in a situation, when an image of large size is 

given on neuron input (more than 128128 pixels). The second 

case occurs, when it is necessary to compute the outputs of many 

neurons in a parallel way (the size of input data is still relevant but 

not so much). The resulting acceleration varies from a few up to 

several times, depending on the type of neural network. 

Comparing acceleration of non-linear neural networks obtained in 

tests presented in the article to results for two other types of neural 

networks (Kohonen and LVQ network [3]), it can be noted that the 

greatest acceleration in comparison with the multi-thread 

implementation for CPU is obtained for Kohonen network and the 

lowest for LVQ network. The differences in performance arise due 

to the construction of neural networks, which requires the 

calculations to be carried out in steps. The more synchronization 

points of calculations, the less acceleration was achieved. In neural 

networks, in which victorious neuron is selected, applied sorting 

algorithm influences performance as well. For this reason, in the 

case of LVQ neural network a small acceleration is achieved mainly 

due to the repeated use of a slow sorting algorithm. 

In the paper [3] it is described that one of the basic applications 

of neural networks - pattern recognition. The results obtained in 

the study show that satisfactory results can be achieved only when 

some features of the images are calculated earlier. Computing 

image features is an example of preprocessing, which may require 

a lot of calculations and hence computations can take a lot of time. 

Not all the features of an image are suitable for computations on  

a graphics card. Therefore in the next stage of creating an 

application, which uses OpenCL library, a general purpose 

processor can be joined to carry out preprocessing. On the basis of 

the constructed heterogeneous computing platform, one can build 

a pipeline to pre-process and classify the images. In this way one 

can get an acceleration which arises not only due to the use of 

accelerators capable of performing calculations in parallel way. 
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