
16 Measurement Automation Monitoring, Jan. 2015, vol. 61, no. 01

Maciej KŁYŚ, Magdalena SZYMCZYK, Piotr SZYMCZYK, Mirosław GAJER
AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Parallel implementation of neural networks with the use
of GPGPU technology OpenCL

Abstract

The article discusses possibilities of implementing a neural network in
a parallel way. The issues of implementation are illustrated with the
example of the non-linear neural network. Parallel implementation of
earlier mentioned neural network is written with the use of OpenCL
library, which is a representative of software supporting general-purpose
computing on graphics processor units (GPGPU). The obtained results
demonstrate that some group of algorithms can be computed faster if they
are implemented in a parallel way and run on a multi-core processor
(CPU) or a graphics processing unit (GPU). In case of the GPU, the
implemented algorithm should be divided into many threads in order to
perform computations faster than on a multi-core CPU. In general,
computations on a GPU should be performed when there is a need to
process a large amount of data with the use of algorithm which is very well
suited to parallel implementation.

Keywords: OpenCL, Artificial Neural Networks, GPGPU.

1. Introduction

The computers are now an integral part of life of many people. It

is hard to mention all the fields in which computers have been

applied. They have contributed to the enormous progress because

they are capable of performing lots of millions of calculations per

second. With the use of this mighty computing power, a great deal

of applications have been created to make our everyday lives

easier. It is just the software development which has contributed to

such a large development of general purpose processors (CPU -

Central Processing Unit). More and more complex applications

consume more computer resources. Over the last few decades one

can see an extremely large growth in the performance efficiency

of general-purpose processors. In the sixties, one of the founders

of Intel observed that the number of transistors in a chip doubles

about every 24 months. Later, this observation was called Moore's

Law. In addition to the number of transistors the frequency of

processors has been considerably increased . In the recent years

one has seen a slowdown in increasing the operating frequency of

processors, because for higher and higher frequencies, it is more

difficult to construct and cool the processor. In order to further

increase the performance of the processors, one decided to

introduce processors that contain more than one core.

Parallely with the development of processors, the graphics cards

were also developed (GPU - The Graphics Processing Unit), in

which a lot of processing units were used. It is one of the few

characteristics common to the construction of the GPU and CPU.

In the GPU, a number of cores performing calculations can be

counted in thousands, while in the CPU there are up to the tens.

Despite the increased amount of processing elements, high

performance of graphics cards can only be achieved when in the

calculations a lot of threads are used (hundreds, thousands).

Until recently, the creation of tools that support the development

of multi-threaded software was focused around the CPU. Only a

few years ago a common standard was introduced to assist

creation of applications to be run on the GPU - OpenCL. Since

that time, many implementations of the same problem for the CPU

and GPU have been created in order to compare their

performance. One of them are neural networks which is the

problem very well suited for parallelization. In the process of

learning and testing neural network there are a lot of the same

operations performed, so one can share the calculations on

multiple threads.

The another advantage of neural networks, in the addition to

easiness of writing parallel implementations, there is a possibility

of solving many of the problems through network learning. One of

the oldest applications of neural networks is the pattern

recognition. In this area, a particular property of neural network

was used, which consisted in the fact that they are able to find

relationships between the learning data, and then on this basis, the

network is able to classify previously unknown data.

The article describes the implementation of a non-linear neural

network using OpenCL library (Chapter 5). In paper [3] was

described an implementation of two other neural networks:

Kohonen and LVQ. While choosing neural networks one was

guided by learning methods of various neural networks. Among the

algorithms of adapting selected neural networks one can distinguish

two types of learning: with the teacher and self-learning.

During writing an implementation of algorithms which are

executed by multiple threads, it is necessary to take into account

the limitations imposed on the programmer by the existing

hardware. Dismissal of hardware limitations can lead to a situation

that, despite of the fact that the algorithm is executed by multiple

threads, the execution time is longer than for sequential

algorithms. The limitations that should be considered while

implementing an algorithm which is designed to perform on the

graphics card, are presented in chapter six.

During creation of a neural network implementation, the

emphasis was put on obtaining high performance in GPU

computing. For non-linear neural networks, the received results

and a comparison of results obtained from sequential and multi-

threaded implementations, written in C ++ programming

language, are presented in chapter seven. Test results for the other

two neural networks are described in paper [3].

2. General purpose computations on GPU

For the first time term GPGPU (General-Purpose computation

on Graphics Processing Units) was introduced by Mark Harris in

2002, who noticed the tendency towards using computation

potential of graphics processors for computations which are not

connected with showing graphics on the computer monitor.

Fig. 1. Difference in floating-point capabilities of CPU and GPU. Source: [4]

Calculations began to move from general purpose processors to

graphics processors when it turned out that they exceeded the

performance of the CPU. During last decade the difference still

grows (Fig. 2).

Measurement Automation Monitoring, Jan. 2015, vol. 61, no. 01 17

The reason for discrepancy in floating-point computing

capabilities between the CPU and the GPU is that the GPU is

specialized in processing the large amount of highly paralleled

data. For this reason the GPU was designed in order that more

transistors could be assigned to process data and not to cache data

and flow control [4].

3. OpenCL

In 2008 was published the first specification of OpenCL

framework [1, 2, 5]. It is a programming platform destined to

perform computations on heterogeneous platform which consists

of different types of computing units (coprocessors) (i.e. GPU,

CPU). OpenCL provides a low-level modelling of hardware and

framework that supports the creation of applications. Before the

advent of OpenCL, it was necessary to use the proprietary

software provided by manufacturer of particular computing unit.

With the appearance of OpenCL, the software designed with the

use of this technology can be launched on computing units from

different manufacturers without changing the code.

OpenCL specifications assumes the division of a program into

two parts:

 one program executed on host side,

 the other program executed on one or more computing units

(OpenCL devices), which are divided into Compute Units, and

further to the Processing Elements.

The computing code (called kernel) executed on the

coprocessor-side is written in OpenCL C, which is a subset of ISO

C99. The application which uses OpenCL sends the list of

commands (kernels) from the host to the coprocessors to perform

the calculations.

4. Artificial neural networks

An inspiration to create artificial neural networks is the human

brain, which is considered as the most complicated human organ.

The brain weights about 1,5 kilos and its volume and surface is

1400 cm3, and 2000 cm2 respectively. The number of connections

between the cells is estimated at 1015. The speed of human brain is

estimated at 1018 operations per second [6] (for comparison, the

theoretical performance of the fastest computer in the world (Titan

- Cray XK7) is estimated at 27112.5 TFlop/s).

The first formal description of a nerve cell came into existence

in 1943, and its author was Pitts McCulloh [7]. Over the next few

decades, many neural network models were created. An artificial

neural network is a very simplified model of human brain. It

consists of tens to hundreds of processing elements. A single

processing element is called a neuron. But it is not as complex as

a real neuron, basically it is a very primitive model of real neuron.

Neurons are tied together with links which have a parameter

(weight), which is modified during the learning process. The

connection topology and organization of neurons in larger groups

form a neural network program, whose task is to solve the

problems assigned to artificial neural network.

General properties of artificial neural networks

The primary criterion by which neural networks can be divided

is the division into a network with one-way connections (called

feedforward) and network with feedback loops (e.g. Hopfield

network). The Neural networks with feedback loops are more

often used in research than in practice [6].

One of the most important feature of the neural networks is their

ability to adapt themselves and self-organize. This characteristic is

used for most practical applications [7, 8]. It allows for the

replacement of some algorithm by a neural network, which

automatically finds the solution to the assigned problem. Finding a

solution may take from a few to many thousands of iterations. The

process of finding automatic solution search is called network

learning. Another important advantage of neural networks is their

reduced sensitivity to the failure of individual network elements.

But the most important advantage of neural networks in the view

of this article is the ability to work in a parallel way. Today's

supercomputers consist of multiple cores which allow to

accelerate the operations of neural network several times.

5. Parallel implementation of nonlinear neural
network

In this chapter the parallel implementation of nonlinear neural

network will be presented. It will be shown which structural

elements can be executed in a parallel way on the GPU and, where

it is necessary, to synchronize the results of calculations. Then, the

selected structures of neural network are mapped onto the objects

used in OpenCL library.

Funcionalities

The implementations allow to setup the following parameters:

 a number of layer: 1 - 3,

 a number of neurons in the layer,

 a backpropagation learning method with the possibility of

simultaneous validation.

Nonlinear neuron

The basic structural unit of multilayer perceptron is a non-linear

neuron. At the time of reception of input signals by the neuron, the

stimulation of neuron is calculated. In practice, the distance

between the input vector and a vector a single neuron's weights is

calculated with the use of selected metrics. In this case, the scalar

product is used.

The distance between individual elements of the input vector

and vector of a neuron's weights can be calculated by n

independent threads, where n is the number of neuron inputs. This

is an example of SIMD unit, which executes the same instructions

for different data. The stimulation of neuron (e) is calculated by

summing up the results of individual threads. In the next step the

response of neuron is calculated based on activation function

(sigmoid) and stimulation of neuron.

Fig. 2. Parallel implementation of neuron's response calculation

Each thread which calculates the distance between the elements

of vectors in OpenCL nomenclature is called work-item. In the

case when the calculation of stimulation of neuron is assigned to

too few work-items, one work-item executes calculation for more

than one input of neuron. The input data are collected by the work

18 Measurement Automation Monitoring, Jan. 2015, vol. 61, no. 01

item from the global memory. With this approach to the

calculation of neuron output, it is necessary to share the results of

calculations. For this purpose, the local memory, which is built

into each Compute Unit of graphics card is used. All work-items

involved in calculation of neuron stimulation are member of

workgroup. Work-items with a local number 0 and 1 are

responsible for calculating the sum of results from each thread W.

Response of neuron is calculated and written into the global

memory by work-item with a local number 0.

Layer of neurons

The largest structural element of neural network is a layer.

Stimulations of neurons from the layer m are passed to a layer

with number m+1. The layer consists of unlimited number of

neurons, and the response of each neuron is calculated in a parallel

way. Note, however, that too many layers, and neurons in the

layer can contribute to some problem in finding a solution of the

assigned problem.

The basic assumption in the implementation of a multilayer

perceptron is the ability to use up to three layers, because more of

them will not help to solve the problem and increase the amount of

necessary calculations to be perform. There is no restriction on the

number of parallely executed neurons in the layer. Each neuron is

a workgroup in the OpenCL nomenclature. In one graphics card

Compute Unit up to forty workgroups can be performed (ten for

each unit vector). OpenCL standard itself does not specify whether

creating, for example, sixteen workgroups, they will be executed

in the same Compute unit, or they will be splitted into four groups

containing four elements and will be executed in different

Compute Units, thereby providing a parallel calculation of all

neurons.

Fig. 3. Parallel calculation of each neuron's response

The calculation of neural network output requires the

synchronization of the results in a couple of points. The points of

synchronization of nonlinear neural network ale located after each

layer. To synchronize the calculations is used in-order queue,

which ensures that the next kernel will not be executed until the

previous one has been completed.

Network learning - backpropagation algorithm

After calculating the network response to the currently presented

input vector, change of weight vector for each neuron across all

layers is calculated. Modification of n neuron weights can be

performed by n threads (work-items) where n is the number of

neuron inputs. The same n threads simultaneously calculate the

error at the input of the neuron, and the result is stored in the

global memory. If the number of work-items is fewer than the

number of neuron inputs, then one work-item modifies more than

one neuron weight.

6. Limitations

The approach to parallelization of the neural network presented

in the preceding paragraphs has several limitations:

 The number of work-items per one neuron: 256. The limitation

means that, in some cases (the maximum number of elements in

the input vector is less than or equal to 256) only one thread

performs the calculations for a single input.

 The total number of work-items possible to start in graphics

card: 16777216.

 The available global memory: 3GB. In the case of very large

training data sets, it is impossible to load all the training vectors

into graphics card memory.

 Only a certain number of workgroups can be performed in the

parallel way. Theoretically, the maximum number of

workgroups executed in parallel can be estimated as follows: 32

Compute Units 4 vector units = 128 workgroups (assuming

that one workgroup is made up of 64 work-items). Increasing

the number of work-items in a workgroup causes that fewer

workgroups can be executed in a parallel way.

7. Performance tests of neural network

In this chapter, performance of implemented neural network

algorithm will be presented. It will be checked how the execution

time of the algorithm changes, which depends on the size of the

input data and the number of neurons in each layer. The

performance of the implemented algorithm intended to run on the

graphics card, will be compared to the implementation of the same

neural network in C++ programming language (the parallel and

sequential algorithm using OpenMP library). It will also be shown

how the performance of the implemented algorithm looks in

comparison with the library built in Matlab - Neural Network

Toolbox (in the tests only one processor core will be used).

The following table lists the calculation accelerators which are

used for testing of implemented algorithms. Some identifiers (first

column) which will be used in subsequent sections were assigned

to devices.

No. Name of calculation accelerator Programming language/library

1 Intel Core i7 3770K C++ C++

2 Intel Core i7 3770K, C++ OpenMP C++/OpenMP

3 Intel Core i7 3770K, Intel OpenCL C++/Intel OpenCL

4 Intel HD 4000, Intel OpenCL C++/Intel OpenCL

5 Radeon HD7970, AMD OpenCL C++ AMD OpenCL

6 Matlab, Neural Network Toolbox not applicable

Various size of input data

The following table summarizes the execution times for

different sizes of the input data (image n n pixels). In the table

description there is an entry: {x,y,z}. It means the number of

neurons in each layer, starting from layer number one. In any case,

the neural network was tested by five thousand epochs.

Tab. 1. Nonlinear neural network built from three layers: {32, 16, 8}. Number of

epochs: 5000. Learning coefficient: 0.2. Results given in seconds

n x n 1 2 3 4 5 6

16x16 7 8 9,2 14 33 11

32x32 10 9 10 19 40 14

64x64 24 12 13 27 48 33

128x128 70 23 34 54 69 121

256x256 256 96 156 122 45 699

512x512 1010 432 353 278 80 2589

1024x1024 3985 1712 892 647 140 10176

The results presented in the above-mentioned table, indicate that

the implementation of a neural network which runs on general

purpose processor is executed from two up to four times faster

than on graphics cards. Increasing the size of the input image

above 128128 causes the program to execute faster on the

graphics card than on a general purpose processor. There is also an

evident difference in performance between the two graphics cards

because the card Intel HD 4000 has many fewer resources to

perform calculations than the AMD Radeon 7970.

Measurement Automation Monitoring, Jan. 2015, vol. 61, no. 01 19

Fig. 4. Nonlinear neural network built out of three layers: {32, 16, 8}.

Number of epochs: 5000. Learning coefficient: 0,2

The initially poor performance of AMD graphics card is caused

by the fact that the number of work-items in one workgroup

(computing output of one neuron) is much less than the minimum

recommended size of the workgroup (recommended size of

workgroup is a multiple of 64, but not more than 256). The best

performance is achieved when one workgroup consists of exactly

256 working-items. It is worth noting that the computation time

for an image of size 256256 pixels is only five seconds worse

than for the image of size 3232 pixels. This shows how important

is the size of the workgroup.

Various size of neural network layer

In the previous section is shown that the graphics card has some

problems with the images of a smaller size. The purpose of this

test is to check whether an implementation in graphics card can

gain an advantage over a multi-threaded implementation intended

to run in a general purpose processor, in case the size of neural

network is increased. Tests are performed for two sizes of the

input images:

 the smallest of the tested input images,

 the image for which the execution time of sequential

implementation is close to the execution time in the GPU.

Tab. 2. Nonlinear neural network built from three layers. Input image size: 1616.

Number of epochs: 5000. Learning coefficient: 0.2. Results given in seconds

{x,y,z} 1 2 3 4 5 6

{32, 16, 8} 7 10,6 9,3 14 32 12

{64, 32, 8} 8 10,1 9,7 16 33 13

{128, 64, 8} 12 11 12 21 41 15

{256, 128, 8} 23 14 16 32 45 23

{512, 256, 8} 56 23 26 66 57 56

{1024, 512, 8} 240 75 78 175 46 174

{2048, 1024, 8} 1049 334 747 1150 120 780

Tab. 3. Nonlinear neural network built from three layers. Input image size: 128x128.

Number of epochs: 5000. Learning coefficient: 0.2. Results given in seconds

{x,y,z} 1 2 3 4 5 6

{32, 16, 8} 71 24 31 20 70 111

{64, 32, 8} 133 42 61 27 30 261

{128, 64, 8} 263 45 141 41 43 646

{256, 128, 8} 530 130 279 70 69 1261

{512, 256, 8} 1081 499 546 84 93 2541

The results presented in Figs. 5 and 6 show that despite of

unfavorable workgroup size, the implementation of neural network

intended to run on a graphics card can gain advantage over the

multi-threaded C++ implementation only when neural network is

sufficiently large. However, during the test a negative effect of a

large neural network was observed. Neural networks of size {256,

128, 8} (and smaller) were able to learn to recognize the training set.

In contrast, the neural network of size {512, 256, 8} and bigger was

not able to learn at all to recognize the training set.

Fig. 5. Nonlinear neural network built from three layers. Input image size: 1616.

Number of epochs: 5000. Learning coefficient: 0.2

Fig. 6. Nonlinear neural network built from three layers. Input image size: 128128.

Number of epochs: 5000. Learning coefficient: 0.2

Access to global memory

An access to global memory on the AMD Radeon HD 7970

graphics card is accomplished through the twelve channels. Each

channel consists of a number of memory banks. If two work-items

reads data from memory area to which access is through two

different channels, then the reading is in parallel. If from the

selected memory area data is read through the same channel (by

work-items from two different workgroups), then the reading is

serialized, because there is a conflict of channels. In order to avoid

conflicts of channels, work items should read data from the

memory cells which are adjacent to each other and belonging to

the same channel.

In the section Various size of input data the results of tests for

optimized kernels on account of the access to the global memory

are presented. The results of tests performed using the first version

of the kernels were worse, especially for images larger than

128128 pixels.

Tab. 4. Comparison of the results for two implementations of kernels.

The results are given in seconds

n n v. 1 v. 2

16x16 24 33

32x32 36 40

64x64 53 48

128x128 47 69

256x256 493 45

512x512 498 80

1024x1024 508 140

8. Conclusion

The main target of the article is to carry out performance tests

which compare three implementations of one of the chosen neural

20 Measurement Automation Monitoring, Jan. 2015, vol. 61, no. 01

networks. The first two implementations are destined to run on

a general purpose processor. They differ only in the number of used

cores of processor (one core or all the available processor cores).

The last implementation is destined to run on graphics processors.

The significant part of the paper is devoted to implementation and

tests of non-linear neural network. During the implementation it is

noted that certain structural elements of neural network are

repeating (neuron, layer). Due to this fact, some parts of the code

can be used multiple times in different types of neural network. This

phenomenon has been used to implement two other types of neural

networks, Kohonen and LVQ. The details of the implementation

and performance tests are presented in the paper [3].

The implementation of neural network learning algorithms for

GPU is not a difficult task. A programming language used to write

kernels is very similar to C language, and additionally, the Intel

and the AMD corporations delivered programs which check

syntax errors. Some difficulties in the implementation appear only

when one wants to achieve high performance of the implemented

algorithms. During tests of neural networks, it was noted that for

data of big size, computations on graphics cards are much slower

than on quad-core processor. The time of computations of

particular kernels can be checked due to a diagnostic tool (called

the profiler) which is delivered by the AMD corporation. The

implementation's bottleneck was the fact that global memory of

a graphics card was hard accessible. In a code optimization

a programming guide issued by AMD corporation was very

helpful. In the programming guide one can find hints concerning

the implementation, which differ depending on an architecture of

an applied graphics card.

The conducted performance tests show that the graphics card

gains an advantage over a multi-core processor in the two cases.

The first one appears in a situation, when an image of large size is

given on neuron input (more than 128128 pixels). The second

case occurs, when it is necessary to compute the outputs of many

neurons in a parallel way (the size of input data is still relevant but

not so much). The resulting acceleration varies from a few up to

several times, depending on the type of neural network.

Comparing acceleration of non-linear neural networks obtained in

tests presented in the article to results for two other types of neural

networks (Kohonen and LVQ network [3]), it can be noted that the

greatest acceleration in comparison with the multi-thread

implementation for CPU is obtained for Kohonen network and the

lowest for LVQ network. The differences in performance arise due

to the construction of neural networks, which requires the

calculations to be carried out in steps. The more synchronization

points of calculations, the less acceleration was achieved. In neural

networks, in which victorious neuron is selected, applied sorting

algorithm influences performance as well. For this reason, in the

case of LVQ neural network a small acceleration is achieved mainly

due to the repeated use of a slow sorting algorithm.

In the paper [3] it is described that one of the basic applications

of neural networks - pattern recognition. The results obtained in

the study show that satisfactory results can be achieved only when

some features of the images are calculated earlier. Computing

image features is an example of preprocessing, which may require

a lot of calculations and hence computations can take a lot of time.

Not all the features of an image are suitable for computations on

a graphics card. Therefore in the next stage of creating an

application, which uses OpenCL library, a general purpose

processor can be joined to carry out preprocessing. On the basis of

the constructed heterogeneous computing platform, one can build

a pipeline to pre-process and classify the images. In this way one

can get an acceleration which arises not only due to the use of

accelerators capable of performing calculations in parallel way.

9. References

[1] AMD OpenCL programming guide, AMD Accelerated Parallel

Processing, http://developer.amd.com/download/AMD_Accele rated_

Parallel_Processing_OpenCL_Programming_Guide.pdf

[2] Khronos, OpenCL documentation, http://www.khronos.org/registry/

cl/sdk/1.2/docs/man/xhtml/

[3] Kłyś M.: Master thesis „Rozpoznawanie kształtów z wykorzystaniem

sieci neuronowych i technologii GPGPU OpenCL“, AGH, 2013.

[4] NVIDIA, OpenCL programming guide for the CUDA architecture,

http://www.nvidia.com/content/cudazone/download/OpenCL/NVIDIA

_OpenCL\linebreak_ProgrammingGuide.pdf

[5] Scarpino M: How to accelerate graphics and computation, 2011.

[6] Tadeusiewicz R.: Sieci neuronowe, Akademicka Oficyna

Wydawnicza, 1993.

[7] Tadeusiewicz R., Flasiński M.: Rozpoznawanie obrazów, PWN, 1991.

[8] Tadeusiewicz R., Korohoda P.: Komputerowa analiza i przetwarzanie

obrazów. Wyd. Fundacji Postępu Telekomunikacji, 1997.

Received: 28.10.2014 Paper reviewed Accepted: 01.12.2014

 MSc Maciej KŁYŚ

He graduated in 2013 in discipline of Automatic Control

and Robotics at AGH University of Science and

Technology in Cracow. Currently his scientific interest

include artificial intelligence and general purpose

computation on graphics processing units (GPGPU).

e-mail: kmaci3k@gmail.com

PhD Magdalena SZYMCZYK

She earned her Masters degree in Electronic

Engineering in AGH University of Science and

Technology (Krakow, Poland) in 1988, and Ph.D.

degree in Computer Science also in AGH University of

Science and Technology in 1999. Currently, she is

a lecturer at AGH University of Science and

Technology. Her research interests include real time

computer systems, embedded systems, parallel

programming and bioinformatics.

e-mail: Magdalena.szymczyk@agh.edu.pl

PhD Piotr SZYMCZYK

He earned his Masters degree in Electronic

Engineering in AGH University of Science and

Technology (Krakow, Poland) in 1988, and Ph.D.

degree in Computer Science also in AGH University

of Science and Technology in 1997. Currently, he is

a lecturer at AGH University of Science and

Technology. His research interests include real time

computer systems, embedded systems, natural

computing and bioinformatics.

e-mail: Piotr.szymczyk@agh.edu.pl

PhD Mirosław GAJER

He was born in Cracow on 25.04.1971. In 1996 he

graduated in the discipline of electronics at AGH

University of Science and Technology in Cracow. In

2000 he obtained the PhD degree in computer science.

Currently his scientific interest concentrates in the field

of artificial intelligence, evolutionary computations and

systems, computational linguistics, natural language

processing and machine translation.

e-mail: mirek.gajer@gmail.com

