Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Due to the separation of magnetic field, electrical isolation and thermal isolation, motor drives possess a high fault-tolerance characteristic. In this paper, comparative study of mutual inductance between the proposed segmented rotor switched reluctance motor (SSRM) and the conventional switched reluctance motor (SRM) is carried out first, illustrating that the proposed SSRM has less mutual inductance between phases than the conventional SRM. In addition, if winding faults or power converter faults lead to phase failure, a comparative analysis on fault-tolerant performance under phase failure condition between the proposed SSRM and the conventional SRM is simulated in detail using the finite element method (FEM). Simulation results reveal that dynamic performance of the proposed SSRM, including output torque and phase current, is better than that of the conventional SRM. That is, the capacity of operating with the fault under phase failure condition in the proposed SSRM is superior to that in the conventional SRM.
Rocznik
Tom
Strony
375--381
Opis fizyczny
Bibliogr. 24 poz., rys., wykr., tab.
Twórcy
autor
- School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China
- Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212013, China
autor
- School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China
autor
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China
autor
- Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212013, China
autor
- Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212013, China
autor
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China
Bibliografia
- [1] M. Michalczuk, L.M. Grzesiak, and B. Ufnalski, “Hybridization of the lithium energy storage for an urban electric vehicle”, Bull. Pol. Ac.: Tech. 61 (2), 325–333 (2013).
- [2] P. Bogusz, “A switched reluctance motor control method limiting the maximum DC source current in the low-speed range”, Bull. Pol. Ac.: Tech. 64 (1), 197–206 (2016).
- [3] J. Gissing, P. Themann, S. Baltzer, T. Lichius, and L. Eckstein, “Optimal control of series plug-in hybrid electric vehicles considering the cabin heat demand”, IEEE Transactions on Control Systems Technology 24 (3), 1126–1133 (2016).
- [4] L. Szabo and M. Ruba, “Segmental Stator Switched Reluctance Machine for Safety-Critical Applications”, IEEE Transactions on Industrial Applications 48 (6), 2223–2229 (2012).
- [5] S.S.R. Bonthu, J. Baek, M.Z. Islam, and S. Choi, “Optimal design of five phase permanent magnet assisted synchronous reluctance motor for integrated starter generator application”, IEEE International Electric Machines and Drives Conference, 433–439 (2015).
- [6] W. Ding and D. Liang, “A fast analytical model for an integrated switched reluctance starter/generator”, IEEE Transactions on Energy Conversion 25 (4), 948–956 (2010).
- [7] A. Cavagnino, A. Tenconi, and S. Vaschetto, “Experimental characterization of a belt-driven multiphase induction machine for 48 V automotive applications: losses and temperatures assessments”, IEEE Transactions on Industry Applications 52 (2), 1321–1330 (2016).
- [8] X. Sun, L. Chen, Z. Yang, and H. Zhu, “Speed-sensorless vector control of a bearingless induction motor with artificial neural network inverse speed observer”, IEEE/ASME Transactions on Mechatronics 18 (4), 1357–1366 (2013).
- [9] X. Sun, L. Chen, H. Jiang, Z. Yang, J. Chen, and W. Zhang, “High-performance control for a bearingless permanent magnet synchronous motor using neural network inverse scheme plus internal model controllers”, IEEE Transactions on Industrial Electronics 63 (6), 3479–3488 (2016).
- [10] X. Sun, L. Chen, and Z. Yang, “Overview of bearingless permanent magnet synchronous motors”, IEEE Transactions on Industrial Electronics 60 (12), 5528–5538 (2013).
- [11] X. Sun, Z. Shi, L. Chen, and Z. Yang, “Internal model control for a bearingless permanent magnet synchronous motor based on inverse system method”, IEEE Transactions on Energy Conversion 31 (4), 1539–1548 (2016).
- [12] Y. Guo, J. Zhu, H. Lu, Z. Lin, and Y. Li, “Core loss calculation for soft magnetic composite electrical machines”, IEEE Transactions on Magnetics 48 (1), 3112–3115 (2012).
- [13] Y. Guo, J. Zhu, H. Lu, Y. Li, and J. Jin, “Core loss computation in a permanent magnet transverse flux motor with rotating fluxes”, IEEE Transactions on Magnetics 50 (11), Art. Seq. No. 6301004 (2014).
- [14] G. Lei, Y.G. Guo, J.G. Zhu, T.S. Wang, X.M. Chen, and K.R. Shao, “System level six sigma robust optimisation of a drive system with PM transverse flux machine”, IEEE Transactions on Magnetics 48 (2), 923–926 (2012).
- [15] G. Lei, C.C. Liu, J. Zhu, and Y. Guo, “Robust multidisciplinary design optimization of PM machines with soft magnetic composite cores for batch production”, IEEE Transactions on Magnetics 52 (3), Art. Seq. No. 8101304 (2016).
- [16] A.G. Jack, B.C. Mecrow, and J.A. Haylock, “A comparative study of permanent magnet and switched reluctance motors for high-performance fault-tolerant applications”, IEEE Transactions on Industry Applications 38 (4), 889–895 (1996).
- [17] T. Roubache, S. Chaouch, and M.S.N. Said, “Sensorless fault-tolerant control of an induction motor based electric vehicle”, Journal of Electrical Engineering and Technology 11 (5), 1423–1432 (2016).
- [18] G.H. Liu, M. Chen, and W.X. Zhao, “Design and analysis of five-phase fault-tolerant interior permanent-magnet Vernier machine”, IEEE Transactions on Applied Superconductivity 26 (4), Art. Seq. No. 0604805 (2016).
- [19] H. Shin, K.B. Lee, “Optimal design of a 1 kW switched reluctance generator for wind power systems using a genetic algorithm”, IET Electric Power Applications 10 (8), 807–817 (2016).
- [20] Q. Chen, G.H. Liu, W.X. Zhao, M.M, Shao, and Z.M. Liu, “Design and analysis of the new high-reliability motors with hybrid permanent magnet material”, IEEE Transactions on Magnetics 50 (12), Art. Seq. No. 8207010 (2014).
- [21] B.N. Qu, and J.C. Song, T. Liang, H.D. Zhang, “Mutual coupling and its effect on torque waveform of even number phase switched reluctance motor”, International Conference on Electrical Machines and Systems, 3405–3410 (2008).
- [22] F. Piriou, A. Razek, “Calculation of saturated inductances for numerical simulation of synchronous machine”, IEEE Transactions on Magnetics 19 (6), 2628–2631, (1983).
- [23] J.Ye, B. Bilgin, and A. Emadi, “Elimination of mutual flux effect on rotor position estimation of switched reluctance motor drives”, IEEE Transactions on Power Electronics 30 (3), 1499–1512 (2015).
- [24] J. Ye, B. Bilgin, and A. Emadi, “An extended-speed low-ripple torque control of switched reluctance motor drives”, IEEE Transactions on Power Electronics 30 (3), 1457–1470 (2015).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c07231da-522e-4a9e-9052-55796097827e