PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulation and experimental study of the thermal characteristics of a high-speed motorized spindle

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Based on the finite element simulation software ANSYS Workbench, this study reports the thermal characteristics of a high-speed motorized spindle. The temperature field distribution and axial thermal deformation of the motorized spindle are then detected on an experimental platform. A comparison between the experimental and simulation results revealed the temperature rise of the motorized spindle during the working process. Under steady-state conditions of the working motorized spindle, the temperatures of the front bearing, rear bearing and stator were determined as 20°C, approximately 30°C and 25°C, respectively. The axial thermal elongation of the motorized spindle is approximately 10 μm
Rocznik
Strony
17--22
Opis fizyczny
Bibliogr. 16 poz., rys.
Twórcy
autor
  • China Light Industry Plastic Mold Engineering Technology Research Center, Ningbo Polytechnic, Ningbo 315800, China
  • Ningbo Shuaitelong Group Co., Ltd, Ningbo 315000, China
  • Ningbo Shuaitelong Group Co., Ltd, Ningbo 315000, China
Bibliografia
  • [1] Hao, J., Li, C.Y., Song, W.J., Yao, Z.H., Miao, H.H., Xu, M.T., et al. (2023). Thermal-mechanical dynamic interaction in highspeed motorized spindle considering nonlinear vibration. International Journal of Mechanical Sciences, 240(2), 107959. doi:10.1016/J.IJMECSCI.2022.107959
  • [2] Dai, Y., Tao, X.S., Xuan, L.Y., Ou, H., & Wang, G. (2022). Thermal error prediction model of a motorized spindle considering variable preload. The International Journal of Advanced Manufacturing Technology, 121(78), 47454756. doi: 10.1007/S00170-022-09679-Y
  • [3] Dai, Y., Tao, X.S., Li, Z.L., Zhan, S.Q., Li, Y., & Gao, Y.H. (2022). A Review of Key Technologies for High-Speed Motorized Spindles of CNC Machine Tools. Machines, 10(2), 145. doi:10.3390/MACHINES10020145
  • [4] Zhang, Y., Wang, L.F., Zhang, Y.D., & Zhang, Y.D. (2021). Design and thermal characteristic analysis of motorized spindle cooling system. Advances in Mechanical Engineering, 13(5),781-802. doi: 10.1177/16878140211020878
  • [5] Su, H., Lu, L.H., Liang, Y.C., Zhang, Q., Sun, Y. (2014). Thermal analysis of the hydrostatic spindle system by the finite volume element method. The International Journal of Advanced Manufacturing Technology, 71(9-12), 1949-1959. doi: 10.1007/s00170-014-5627-8
  • [6] Sun, X. Y. (2019). Investigation on Thermal Characteristics and Cooling Method for High-speed Motorized Spindle. Shanghai Jiaotong University. doi: 10.27307/d.cnki.gsjtu.2019.002077
  • [7] Su, C., & Chen, W. (2022). An optimized thermal network model to evaluate the thermal behavior on motorized spindle considering lubricating oil and contact factors. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236(13), 7484-7499. doi: 10.1177/09544062221075171
  • [8] Zhang, C.X., Chen, L.F., Wang, W.M., & Liu, F.L. (2015). Research on high-speed motorized spindle thermal characteristics: simulation and experiment. Journal of Beijing University of Chemical Technology (Natural Science Edition), 42(6), 90-96. doi: 10.13543/j.cnki.bhxbzr.2015.06.015
  • [9] Kumar, S., & Srinivasu, D.S. (2022). Optimal number of thermal hotspots selection on motorized milling spindle to predict its thermal deformation. Materials Today: Proceedings, 62(6), 3376-3385. doi: 10.1016/J.MATPR.2022.04.267
  • [10] Sun, S., Qiao, Y., Gao, Z., Wang, J., & Bian, Y. (2023). A thermal error prediction model of the motorized spindles based on ABHHO-LSSVM. The International Journal of Advanced Manufacturing Technology, 127(5-6), 2257-2271. doi: 10.1007/S00170-023-11429-7
  • [11] Truong, D.S., Kim, B.S., & Ro, S.K. (2021). An analysis of a thermally affected high-speed spindle with angular contact ball bearings. Tribology International, 157(5), 106881. doi: 10.1016/J.TRIBOINT.2021.106881
  • [12] Kumar, B.V., Manikandan, G., & Kanna, P.R. (2021). Enhancement of heat transfer in SAH with polygonal and trapezoidal shape of the rib using CFD. Energy, 234(9), 121154. doi:10.1016/ j.energy.2021.121154
  • [13] Singh, A., & Singh, D.K. (2021). An investigation on the forced convection heat transfer in the gap of two rotating disks with laminar inflow. Heat Transfer, 50(7), 6964-6983. doi: 10.1002/htj.22212
  • [14] Tang, Y., Jing, X., Li, W., He, Y., & Yao, J.X. (2021). Analysis of influence of different convex structures on cooling effect of rectangular water channel of motorized spindle. Applied Thermal Engineering, 198(5), 117478. doi: 10.1002/htj.22212
  • [15] Jiang, Z.Y., Huang, X.Z., Chang, M.X., Li, C., & Ge, Y. (2021). Thermal error prediction and reliability sensitivity analysis of motorized spindle based on Kriging model. Engineering Failure Analysis, 127(9), 105558. doi: 10.1016/J.ENGFAILANAL.2021.105558
  • [16] Cheng, Y., Zhang, X., Zhang, G., Jiang, W., & Li, B. (2022). Thermal error analysis and modeling for high-speed motorized spindles based on LSTM-CNN. The International Journal of Advanced Manufacturing Technology, 121(5/6), 3243-3257. doi:10.1007/S00170-022-09563-9
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c070cb7c-4b18-4dc7-b9c9-968ec71878a3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.