PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Model supporting the design and improvement of products in their life cycle considering sustainable development criteria

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A market economy requires continuous improvement of products. The classic case is striving to meet customer expectations, i.e., ensuring product quality. However, in terms of sustainable development, it is also necessary to take actions that contribute to the protection of the natural environment and ensure a positive social impact. It is still a challenge. Therefore, the aim of the article is to develop a model for product improvement by considering the criteria of quality, environment, and social impact. The developed model is an original decision indicator, according to which prototypes of modified products are ranked according to their fulfillment of (i) expected quality, (ii) low environmental impact in the life cycle (LCA), and (iii) social responsibility. Based on the results of the model and the proposed decision indicator, it is possible to determine the direction of improvement of any product by assessing prototypes (product variants) in terms of their sustainable development. The model test is carried out for photovoltaic (PV) panels, popular in recent years, verified according to six prototypes and 15 sustainability criteria regarding their quality, environmental impact, and social responsibility. The test confirmed its effectiveness in the case of photovoltaic panels, but the proposed model can be successfully used to design or improve other products. This is supported by a developed original decision indicator supporting the making of multicriteria quality, environmental, and social decisions at the stage of designing new products or improving existing products.
Rocznik
Strony
5--13
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
  • Rzeszow University of Technology 12 Powstańców Warszawy Av., 35-959 Rzeszów, Poland
  • Rzeszow University of Technology 12 Powstańców Warszawy Av., 35-959 Rzeszów, Poland
Bibliografia
  • 1. Agrawal, D., Dwivedi, A., Patil, A. & Paul, S.K. (2023) Impediments of product recovery in circular supply chains: Implications for sustainable development. Sustainable Development 31, pp. 1618–1637, doi: 10.1002/sd.2472.
  • 2. Bravi, M., Parisi, M.L., Tiezzi, E. & Basosi, R. (2011) Life cycle assessment of a micromorph photovoltaic system. Energy 36, pp. 4297–4306, doi: 10.1016/j.energy.2011.04.012.
  • 3. Casamayor, J.L. & Su, D.Z. (2011) Environmental impact assessment of lighting products. Key Engineering Materials 486, pp. 171–174, doi: 10.4028/www.scientific.net/KEM.486.171.
  • 4. Chatty, T., Harrison, W., Ba-Sabaa, H.H., Faludi, J. & Murnane, E.L. (2022) Co-creating a framework to integrate sustainable design into product development practice: Case study at an engineering consultancy firm. Sustainability 14, 9740, doi: 10.3390/su14159740.
  • 5. Chursin, A., Chupina, Z., Ostrovskaya, A. & Boginsky, A. (2023) The creation of fundamentally new products as a factor of organizations’ sustainable economic development. Sustainability 15, 9747, doi: 10.3390/su15129747.
  • 6. Deja, A., Ślączka, W., Dzhuguryan, L., Dzhuguryan, T. & Ulewicz, R. (2023) Green technologies in smart city multifloor manufacturing clusters: A framework for additive manufacturing management. Production Engineering Archives 29(4), pp. 428–443, doi: 10.30657/pea.2023.29.48.
  • 7. Diaz, A., Schöggl, J.-P., Reyes, T. & Baumgartner, R.J. (2021) Sustainable product development in a circular economy: Implications for products, actors, decision-making support and lifecycle information management. Sustainable Production and Consumption 26, pp. 1031–1045, doi: 10.1016/j.spc.2020.12.044.
  • 8. Edwards, W. & Barron, F.H. (1994) SMARTS and SMARTER: Improved simple methods for multiattribute utility measurement. Organizational Behavior and Human Decision Processes 60 (3), pp. 306–325, doi: 10.1006/obhd.1994.1087.
  • 9. Gajdzik, B. & Wolniak, R. (2022) Smart production workers in terms of creativity and innovation: The implication for open innovation. Journal of Open Innovation: Technology, Market, and Complexity 8, 68, doi: 10.3390/joitmc8020068.
  • 10. Garvin, D.A. (1984) What does “product quality” really mean? Sloan Management Review 25, pp. 25–43.
  • 11. Gawlik, R. (2016) Methodological aspects of qualitative-quantitative analysis of decision-making processes. Management and Production Engineering Review 7, pp. 3–11, doi: 10.1515/mper-2016-0011.
  • 12. Gawlik, R. (2018) Encompassing the work-life balance into early career decision-making of future employees through the analytic hierarchy process. In: Kantola, J., Barath, T., Nazir, S. (eds) Advances in Human Factors, Business Management and Leadership. AHFE 2017. Advances in Intelligent Systems and Computing, vol 594, pp. 137–147. Springer, Cham, doi: 10.1007/978-3-319-60372-8_14.
  • 13. Hariadi, S., Moengin, P. & Maulidya, R. (2023) Impact of green practices through green product and service innovation: sustainable product-service system performance model. International Journal of Sustainable Engineering 16, pp. 1–15, doi: 10.1080/19397038.2023.2205873.
  • 14. Kolman, R. (1992) Quality Engineering. Warsaw: PWE (in Polish).
  • 15. Mu, E. & Pereyra-Rojas, M. (2017) Practical Decision Making. Springer International Publishing, Cham, doi: 10.1007/978-3-319-33861-3.
  • 16. Muteri, V., Cellura, M., Curto, D., Franzitta, V., Longo, S., Mistretta, M. & Parisi, M.L. (2020) Review on life cycle assessment of solar photovoltaic panels. Energies 13, 252, doi: 10.3390/en13010252.
  • 17. Nagy, S. & Veresné Somosi, M. (2022) The relationship between social innovation and digital economy and society. Regional Statistics 12, pp. 3–29, doi: 10.15196/RS120202.
  • 18. Ostasz, G., Siwiec, D. & Pacana, A. (2022) Universal model to predict expected direction of products quality improvement. Energies 15, 1751, doi: 10.3390/en15051751.
  • 19. Pacana, A., Bednarova, L., Pacana, J., Liberko, I., Woźny, A. & Malindzak, D. (2014) Effect of selected factors of the production process of stretch film for its resistance to puncture. Przemysł Chemiczny 94 (8), pp. 1334–1336.
  • 20. Pacana, A., Radon-Cholewa, A., Pacana, J. & Woźny, A. (2015) The study of stickiness of packaging film by Shainin method. Przemysł Chemiczny 93 (12), pp. 2263–2264.
  • 21. Pacana, A. & Siwiec, D. (2021) Universal model to suport the quality improvement of industrial products. Materials 14, 7872, doi: 10.3390/ma14247872.
  • 22. Pacana, A. & Siwiec, D. (2022a) Model to predict quality of photovoltaic panels considering customers’ expectations. Energies 15, 1101, doi: 10.3390/en15031101.
  • 23. Pacana, A. & Siwiec, D. (2022b) Method of determining sequence actions of products improvement. Materials 15, 6321, doi: 10.3390/ma15186321.
  • 24. PN-ISO 26000:2012. Wytyczne dotyczące społecznej odpowiedzialności. Warszawa: PKN.
  • 25. Ponto, J. (2015) Understanding and evaluating survey research. Journal of the Advanced Practitioner in Oncology 6(2), pp. 168–171.
  • 26. Proske, M. & Finkbeiner, M. (2020) Obsolescence in LCA–methodological challenges and solution approaches. International Journal of Life Cycle Assessment 25(2), pp. 495–507, doi: 10.1007/s11367-019-01710-x.
  • 27. Relich, M. (2023) A data-driven approach for improving sustainable product development. Sustainability 15, 6736, doi: 10.3390/su15086736.
  • 28. Schulte, J. & Knuts, S. (2022) Sustainability impact and effects analysis – A risk management tool for sustainable product development. Sustainable Production and Consumption 30, pp. 737–751, doi: 10.1016/j.spc.2022.01.004.
  • 29. Shen, Y., Zhou, J., Pantelous, A.A., Liu, Y. & Zhang, Z. (2022) A voice of the customer real-time strategy: An integrated quality function deployment approach. Computers & Industrial Engineering 169, 108233, doi: 10.1016/j. cie.2022.108233.
  • 30. Siwiec, D. & Pacana, A. (2021a) A pro-environmental method of sample size determination to predict the quality level of products considering current customers’ expectations. Sustainability 13, 5542, doi: 10.3390/su13105542.
  • 31. Siwiec, D. & Pacana, A. (2021b) Model of choice photovoltaic panels considering customers’ expectations. Energies 14, 5977, doi: 10.3390/en14185977.
  • 32. Siwiec, D. & Pacana, A. (2022) A new model supporting stability quality of materials and industrial products. Materials 15, 4440, doi: 10.3390/ma15134440.
  • 33. Siwiec, D. & Pacana, A. (2024) Predicting design solutions with scenarios considering the quality of materials and products based on a life cycle assessment (LCA). Materials 17, 951, doi: 10.3390/ma17040951.
  • 34. Sullivan, G.M. & Artino, A.R. (2013) Analyzing and interpreting data from Likert-type scales. Journal of Graduate Medical Education 5(4), pp. 541–542, doi: 10.4300/JGME- 5-4-18.
  • 35. Ulewicz, R. & Novy, F. (2019) Quality management systems in special processes. 13th International Scientific Conference on Sustainable, Modern and Safe Transport (TRANSCOM) 40, pp. 113–118, doi: I10.1016/j.trpro.2019. 07.019.
  • 36. Ulewicz, R., Siwiec, D. & Pacana, A. (2023) Sustainable vehicle design considering quality level and life cycle environmental assessment (LCA). Energies 16, 8122, doi: 10.3390/en16248122.
  • 37. Wang, F., Li, H., Liu, A. & Zhang, X. (2015) Hybrid customer requirements rating method for customer-oriented product design using QFD. Journal of Systems Engineering and Electronics 26, pp. 533–543, doi: 10.1109/JSEE.2015.00061.
  • 38. Watz, M. & Hallstedt, S.I. (2022) Towards sustainable product development – Insights from testing and evaluating a profile model for management of sustainability integration into design requirements. Journal of Cleaner Production 346, 131000, doi: 10.1016/j.jclepro.2022.131000.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c069dedb-0363-46ce-8d19-56e5f5b7ca11
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.