Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study aims to carry out regional intensity−duration−frequency (IDF) equality using the relationship with IDF obtained from point frequency analysis. Eleven empirical equations used in the literature for seven climate regions of Turkey were calibrated using particle swarm optimization (PSO) and genetic algorithm (GA) optimization techniques and the obtained results were compared. In addition, in this study, new regional IDF equations were obtained for each region utilizing Multi-Gene Genetic Programming (MGGP) method. Finally, Kruskal–Wallis (KW) test was applied to the IDF values obtained from the methods and the observed values. As a result of the study, it was observed that the coefficients of 11 empirical equations calibrated with PSO, and GA techniques were different from each other. The mean absolute error (MAE), root mean square error (RMSE), mean absolute relative error (MARE), coefficient of determination (R2 ), and Taylor diagram were used to evaluate the performances of PSO, GA, and MGGP techniques. According to the performance criteria, it has been determined that the IDF equations obtained by the MGGP method for the Eastern Anatolia, Aegean, Southeastern Anatolia, and Central Anatolia regions are more successful than the empirical equations calibrated with the PSO and GA method. The empirical IDF equations produced with PSO and the IDF equations acquired with MGGP have similar findings in the Mediterranean, Black Sea, and Marmara. In addition, the KW test results showed that the data of all models were from the same population.
Wydawca
Czasopismo
Rocznik
Tom
Strony
469--488
Opis fizyczny
Bibliogr. 87 poz.
Twórcy
autor
- Civil Engineering Department, Engineering Faculty, Erciyes University, Kayseri, Turkey
autor
- Civil Engineering Department, Faculty of Engineering and Natural Sciences, KTO Karatay University, Konya, Turkey
Bibliografia
- 1. Acar R, Çelik S, Senocak S (2008) Rainfall intensity-duration-frequency (IDF) model using an artificial neural network approach. J Sci Ind Res (india) 67:198–202
- 2. Adarsh S, Janga Reddy M (2018) Developing hourly intensity duration frequency curves for urban areas in India using multivariate empirical mode decomposition and scaling theory. Stoch Environ Res Risk Assess 32:1889–1902. https://doi.org/10.1007/s00477-018-1545-x
- 3. Al-Amri NS, Subyani AM (2017) Generation of rainfall intensity duration frequency (IDF) curves for ungauged sites in arid region. Earth Syst Environ 1:8. https://doi.org/10.1007/s41748-017-0008-8
- 4. Al-Khalaf HA (1997) Predicting short duration, high-intensity rainfall in Saudi Arabia. Faculty of the college of graduate studies
- 5. Al-Shaikh AA (1985) Rainfall Frequency Studies for Saudi Arabia. M.S. Thesis, Dept. C.E., King Saud University, Riyadh, p 156
- 6. Al-Wagdany AS (2021) Construction of IDF curves based on NRCS synthetic rainfall hyetographs and daily rainfall records in arid regions. Arab J Geosci 14:527. https://doi.org/10.1007/s12517-021-06922-w
- 7. Alramlawi K, Fıstıkoğlu O (2022) Estimation of intensity-duration-frequency (IDF) curves from large scale atmospheric dataset by statistical downscaling. Tek Dergi 33:11591–11615. https://doi.org/10.18400/tekderg.874035
- 8. Aly A, Pathak C, Teegavarapu RSV et al (2009) Evaluation of Improvised spatial interpolation methods for infilling missing precipitation records. World environmental and water resources congress 2009. American Society of Civil Engineers, Reston, VA, pp 1–10
- 9. Tuğçe A, Ömer Y, Fatih S, Emrah O (2022) Rainfall intensity-duration-frequency analysis in Turkey, with the emphasis of eastern black sea basin. Teknik Dergi. https://doi.org/10.18400/tekderg.727085
- 10. Asikoglu OL, Benzeden E (2014) Simple generalization approach for intensity-duration-frequency relationships. Hydrol Process 28:1114–1123. https://doi.org/10.1002/hyp.9634
- 11. Awadallah AG, Magdy M, Helmy E, Rashed E (2017) Assessment of rainfall intensity equations enlisted in the Egyptian code for designing potable water and sewage networks. Adv Meteorol 2017:1–10. https://doi.org/10.1155/2017/9496787
- 12. Barbero R, Fowler HJ, Blenkinsop S et al (2019) A synthesis of hourly and daily precipitation extremes in different climatic regions. Weather Clim Extrem 26:100219. https://doi.org/10.1016/j.wace.2019.100219
- 13. Başakın EE, Ekmekcioğlu Ö, Özger M, Citakoglu H (2021) Determination of intensity-duration-frequency relation by particle swarm optimization and genetic programming. In: In II. International Applied Statistics Conference (UYIK-2021). Tokat, Turkey, pp 1–8
- 14. Bell FC (1969) Generalized rainfall-duration-frequency relationships. J Hydraul Div ASCE 95:311–327
- 15. Bernard MM (1932) Formulas for rainfall intensities of long duration. Trans Am Soc Civ Eng 96:592–606. https://doi.org/10.1061/taceat.0004323
- 16. Borga M, Vezzani C, Fontana GD (2005) Regional rainfall depth–duration–frequency equations for an alpine region. Nat Hazards 36:221–235. https://doi.org/10.1007/s11069-004-4550-y
- 17. Buba LF, Kura NU, Dakagan JB (2017) Spatiotemporal trend analysis of changing rainfall characteristics in Guinea Savanna of Nigeria. Model Earth Syst Environ 3:1081–1090. https://doi.org/10.1007/s40808-017-0356-2
- 18. Bulti DT, Abebe BG, Biru Z (2021) Climate change–induced variations in future extreme precipitation intensity–duration–frequency in flood-prone city of Adama, central Ethiopia. Environ Monit Assess 193:784. https://doi.org/10.1007/s10661-021-09574-1
- 19. Chang KB, Lai SH, Faridah O (2013) RainIDF: automated derivation of rainfall intensity–duration–frequency relationship from annual maxima and partial duration series. J Hydroinformatics 15:1224–1233. https://doi.org/10.2166/hydro.2013.192
- 20. Chen C (1983) Rainfall intensity-duration-frequency formulas. J Hydraul Eng 109:1603–1621. https://doi.org/10.1061/(asce)0733-9429(1983)109:12(1603)
- 21. Citakoglu H (2021) Comparison of multiple learning artificial intelligence models for estimation of long-term monthly temperatures in Turkey. Arab J Geosci 14:2131. https://doi.org/10.1007/s12517-021-08484-3
- 22. Citakoglu H, Babayigit B, Haktanir NA (2020) Solar radiation prediction using multi-gene genetic programming approach. Theor Appl Climatol. https://doi.org/10.1007/s00704-020-03356-4
- 23. Cook LM, McGinnis S, Samaras C (2020) The effect of modeling choices on updating intensity-duration-frequency curves and stormwater infrastructure designs for climate change. Clim Change 159:289–308. https://doi.org/10.1007/s10584-019-02649-6
- 24. Dastagir MR (2015) Modeling recent climate change induced extreme events in Bangladesh: a review. Weather Clim Extrem 7:49–60. https://doi.org/10.1016/j.wace.2014.10.003
- 25. Deb P, Babel MS, Denis AF (2018) Multi-GCMs approach for assessing climate change impact on water resources in Thailand. Model Earth Syst Environ 4:825–839. https://doi.org/10.1007/s40808-018-0428-y
- 26. Demir V (2022) Enhancing monthly lake levels forecasting using heuristic regression techniques with periodicity data component: application of Lake Michigan. Theor Appl Climatol 148:915–929. https://doi.org/10.1007/s00704-022-03982-0
- 27. Egodawatta P, Thomas E, Goonetilleke A (2007) Mathematical interpretation of pollutant wash-off from urban road surfaces using simulated rainfall. Water Res 41:3025–3031. https://doi.org/10.1016/j.watres.2007.03.037
- 28. Elbaz K, Shen SL, Zhou A et al (2019) Optimization of EPB shield performance with adaptive neuro-fuzzy inference system and genetic algorithm. Appl Sci. https://doi.org/10.3390/app9040780
- 29. Elbaz K, Shen SL, Sun WJ et al (2020) Prediction model of shield performance during tunneling via incorporating improved particle swarm optimization into ANFIS. IEEE Access 8:39659–39671. https://doi.org/10.1109/ACCESS.2020.2974058
- 30. Elsebaie IH (2012) Developing rainfall intensity–duration–frequency relationship for two regions in Saudi Arabia. J King Saud Univ - Eng Sci 24:131–140. https://doi.org/10.1016/j.jksues.2011.06.001
- 31. Elsebaie IH, El Alfy M, Kawara AQ (2021) Spatiotemporal variability of intensity–duration–frequency (idf) curves in arid areas: wadi al-lith, Saudi Arabia as a case study. Hydrology 9:6. https://doi.org/10.3390/hydrology9010006
- 32. Eman Ahmed Hassan El-Sayed (2011) Generation of rainfall intensity duration frequency curves for ungauged sites. Nile Basin Water Sci Eng J 4:112–124
- 33. Eray O, Mert C, Kisi O (2018) Comparison of multi-gene genetic programming and dynamic evolving neural-fuzzy inference system in modeling pan evaporation. Hydrol Res 49:1221–1233. https://doi.org/10.2166/nh.2017.076
- 34. Ewea HA, Elfeki AM, Al-Amri NS (2017) Development of intensity–duration–frequency curves for the Kingdom of Saudi Arabia. Geomat Nat Hazards Risk 8:570–584. https://doi.org/10.1080/19475705.2016.1250113
- 35. Fadhel S, Rico-Ramirez MA, Han D (2017) Uncertainty of intensity–duration–frequency (IDF) curves due to varied climate baseline periods. J Hydrol 547:600–612. https://doi.org/10.1016/j.jhydrol.2017.02.013
- 36. Froehlich DC (1995) Long-duration–rainfall intensity equations. J Irrig Drain Eng 121:248–252. https://doi.org/10.1061/(asce)0733-9437(1995)121:3(248)
- 37. Galiatsatou P, Iliadis C (2022) Intensity-duration-frequency curves at ungauged sites in a changing climate for sustainable stormwater networks. Sustainability 14:1229. https://doi.org/10.3390/su14031229
- 38. Gandomi AH, Alavi AH (2012) A new multi-gene genetic programming approach to non-linear system modeling. Part II: geotechnical and earthquake engineering problems. Neural Comput Appl 21:189–201. https://doi.org/10.1007/s00521-011-0735-y
- 39. García-Bartual R, Schneider M (2001) Estimating maximum expected short-duration rainfall intensities from extreme convective storms. Phys Chem Earth, Part B Hydrol Ocean Atmos 26:675–681. https://doi.org/10.1016/S1464-1909(01)00068-5
- 40. Gebru TA (2020) Rainfall intensity-duration-frequency relations under changing climate for selected stations in the tigray region. Ethiopia J Hydrol Eng 25:05020041. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001999
- 41. Gen M, Cheng R (1997) Genetic algorithms and engineering design. John Wiley, Hoboken
- 42. Gen M, Cheng R, Lin L (2008) Network models and optimization: multiobjective genetic algorithm approach, 1st edn. Springer Publishing Company, Incorporated
- 43. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning, 1st edn. Addison-Wesley Longman Publishing Co., Inc, USA
- 44. Goldberg DE, Deb K (1991) A Comparative analysis of selection schemes used in genetic algorithms. In Found Genet Algorithms 1:69–93
- 45. Görkemli B, Citakoglu H, Haktanir T, Karaboga D (2022) A new method based on artificial bee colony programming for the regional standardized intensity–duration-frequency relationship. Arab J Geosci. https://doi.org/10.1007/s12517-021-09377-1
- 46. Haktanir T, Citakoglu H, Seckin N (2016) Regional frequency analyses of successive-duration annual maximum rainfalls by L-moments method. Hydrol Sci J 61:647–668. https://doi.org/10.1080/02626667.2014.966722
- 47. Hamaamin YAH (2016) Developing of rainfall intensity-duration-frequency model for Sulaimani city. J Zankoy Sulaimani - Part A 19:93–102. https://doi.org/10.17656/jzs.10634
- 48. Hasan I, Saeed Y (2020) Analysis of rainfall data for a number of stations in northern Iraq. Al-Rafidain Eng J (AREJ) 25(2):105–117. https://doi.org/10.33899/rengj.2020.127531.1044
- 49. Hay JE, Easterling D, Ebi KL et al (2016) Conclusion to the special issue: observed and projected changes in weather and climate extremes. Weather Clim Extrem 11:103–105. https://doi.org/10.1016/j.wace.2015.11.002
- 50. Hayder AM, Al-Mukhtar M (2021) Modelling the IDF curves using the temporal stochastic disaggregation BLRP model for precipitation data in Najaf City. Arab J Geosci 14:1957. https://doi.org/10.1007/s12517-021-08314-6
- 51. Hershfield DM (1963) Estimating the probable maximum precipitation. Trans Am Soc Civ Eng 128:534–551. https://doi.org/10.1061/taceat.0008684
- 52. Karahan H, Ayvaz MT, Gürarslan G (2008) Determination of intensity-duration-frequency relationship by genetic algorithm: case study of GAP. Tek Dergi/technical J Turkish Chamb Civ Eng 19:4393–4407
- 53. Karahan H, Ceylan H, Tamer Ayvaz M (2007) Predicting rainfall intensity using a genetic algorithm approach. Hydrol Process 21:470–475. https://doi.org/10.1002/hyp.6245
- 54. Kareem DA, Rahman A, Amen M et al (2022) Comparative analysis of developed rainfall intensity-duration-frequency curves for Erbil with other Iraqi Urban Areas. Water 14:1–17. https://doi.org/10.3390/w14030419
- 55. Kennedy J, Eberhart R (2010) Particle swarm optimization. In: Proceedings of ICNN’95 - International Conference on Neural Networks. IEEE, pp 1942–1948
- 56. Jaleel LA, Farawn MA (2013) Developing rainfall intensity-duration frequency relationship for Basrah city. Kufa J Eng 5:105–112
- 57. Legouhy A (2021) Al_goodplot - boxblot & violin plot. In: MATLAB Cent. Mathworks. https://www.mathworks.com/matlabcentral/fileexchange/91790-al_goodplot-boxblot-violin-plot
- 58. Lestari S, King A, Vincent C et al (2019) Seasonal dependence of rainfall extremes in and around Jakarta. Indones Weather Clim Extrem 24:100202. https://doi.org/10.1016/j.wace.2019.100202
- 59. Liew S, Raghavan SV, Liong S-Y (2014) Development of intensity-duration-frequency curves at ungauged sites: risk management under changing climate. Geosci Lett 1:8. https://doi.org/10.1186/2196-4092-1-8
- 60. Lopcu Y (2007) Modeling the intensity−duration−frequency relationships of annual maximum storms. Dokuz Eylul University
- 61. Mahdi ES, Mohamedmeki MZ (2020) Analysis of rainfall intensity-duration-frequency (IDF) curves of Baghdad city. IOP Conf Ser Mater Sci Eng 888:012066. https://doi.org/10.1088/1757-899X/888/1/012066
- 62. Matlab (2022a) Particleswarm. In: Introd. R2014b. https://www.mathworks.com/help/gads/particleswarm.html
- 63. Matlab (2022b) Genetic Algorithm. https://www.mathworks.com/help/gads/genetic-algorithm.html
- 64. Matlab (2022c) Matlab. In: MATLAB Cent. Mathworks. https://www.mathworks.com/help/stats/kruskalwallis.html
- 65. MGM (2022) Annual areal precipitation in Turkey. In: Turkish state Meteorol. Serv. https://mgm.gov.tr/veridegerlendirme/yillik-toplam-yagis-verileri.aspx
- 66. Mirhosseini G, Srivastava P, Stefanova L (2013) The impact of climate change on rainfall intensity–duration–frequency (IDF) curves in Alabama. Reg Environ Chang 13:25–33. https://doi.org/10.1007/s10113-012-0375-5
- 67. Moujahid M, Stour L, Agoumi A, Saidi A (2018) Regional approach for the analysis of annual maximum daily precipitation in northern Morocco. Weather Clim Extrem 21:43–51. https://doi.org/10.1016/j.wace.2018.05.005
- 68. Ouali D, Cannon AJ (2018) Estimation of rainfall intensity–duration–frequency curves at ungauged locations using quantile regression methods. Stoch Environ Res Risk Assess 32:2821–2836. https://doi.org/10.1007/s00477-018-1564-7
- 69. Shaban WM, Elbaz K, Yang J, Shen SL (2021) A multi-objective optimization algorithm for forecasting the compressive strength of RAC with pozzolanic materials. J Clean Prod 327:129355. https://doi.org/10.1016/j.jclepro.2021.129355
- 70. Searson DP, Leahy DE, Willis MJ (2010) GPTIPS: an open source genetic programming toolbox for multigene symbolic regression. In: In Proceedings of the International multiconference of engineers and computer scientists Citeseer. pp 77–80
- 71. Searson DP (2009) GPTIPS: Genetic programming and symbolic regression for MATLAB
- 72. Şen O, Kahya E (2021) Impacts of climate change on intensity–duration–frequency curves in the rainiest city (Rize) of Turkey. Theor Appl Climatol 144:1017–1030. https://doi.org/10.1007/s00704-021-03592-2
- 73. Şen Z (2019) Annual daily maximum rainfall-based IDF Curve derivation methodology. Earth Syst Environ 3:463–469. https://doi.org/10.1007/s41748-019-00124-x
- 74. Shahid S, Wang X-J, Bin HS et al (2016) Climate variability and changes in the major cities of Bangladesh: observations, possible impacts and adaptation. Reg Environ Chang 16:459–471. https://doi.org/10.1007/s10113-015-0757-6
- 75. Sillmann J, Thorarinsdottir T, Keenlyside N et al (2017) Understanding, modeling and predicting weather and climate extremes: challenges and opportunities. Weather Clim Extrem 18:65–74. https://doi.org/10.1016/j.wace.2017.10.003
- 76. Stephenson AG, Lehmann EA, Phatak A (2016) A max-stable process model for rainfall extremes at different accumulation durations. Weather Clim Extrem 13:44–53. https://doi.org/10.1016/j.wace.2016.07.002
- 77. Subyani AM, Al-Amri NS (2015) IDF curves and daily rainfall generation for Al-Madinah city, western Saudi Arabia. Arab J Geosci 8:11107–11119. https://doi.org/10.1007/s12517-015-1999-9
- 78. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos 106:7183–7192. https://doi.org/10.1029/2000JD900719
- 79. Tyralis H, Langousis A (2019) Estimation of intensity–duration–frequency curves using max-stable processes. Stoch Environ Res Risk Assess 33:239–252. https://doi.org/10.1007/s00477-018-1577-2
- 80. Uncuoğlu E, Latifoğlu L, Özer AT (2021) Modelling of lateral effective stress using the particle swarm optimization with machine learning models. Arab J Geosci 14:2441. https://doi.org/10.1007/s12517-021-08686-9
- 81. VOSviewer welcome to VOSviewer. In: 2022 Cent Sci Technol Stud Leiden Univ Netherlands. https://www.vosviewer.com/
- 82. Voyant C, Notton G, Kalogirou S et al (2017) Machine learning methods for solar radiation forecasting: a review. Renew Energy 105:569–582. https://doi.org/10.1016/j.renene.2016.12.095
- 83. Yavuz K (2018) Determination of the appropriate probability distribution function and formula of the relationship between the period of intensity-rainfall duration-return period for standard rainfall in Turkey. Erciyes University
- 84. Yilmaz AG, Hossain I, Perera BJC (2014) Effect of climate change and variability on extreme rainfall intensity–frequency–duration relationships: a case study of Melbourne. Hydrol Earth Syst Sci 18:4065–4076. https://doi.org/10.5194/hess-18-4065-2014
- 85. Yu PS, Yang TC, Lin CS (2004) Regional rainfall intensity formulas based on scaling property of rainfall. J Hydrol 295:108–123. https://doi.org/10.1016/j.jhydrol.2004.03.003
- 86. Zahiri E-P, Bamba I, Famien AM et al (2016) Mesoscale extreme rainfall events in West Africa: the cases of Niamey (Niger) and the Upper Ouémé Valley (Benin). Weather Clim Extrem 13:15–34. https://doi.org/10.1016/j.wace.2016.05.001
- 87. Zeder J, Fischer EM (2020) Observed extreme precipitation trends and scaling in Central Europe. Weather Clim Extrem 29:100266. https://doi.org/10.1016/j.wace.2020.100266
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c06874d1-ac4f-48d6-b430-eb6dee16e434