PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adsorption of MCl2 (M = Hg, Cd, and Pb) on CuS(001) surface. Density functional theory study

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We explored the adsorption properties of common heavy metal dichlorides (HgCl2, PbCl2, and CdCl2) on the CuS(001) surface using density functional theory (DFT) calculations. The most stable configuration of CuS was found the CuS(001) surface, characterized by Cu–S and S–S terminations. We found that the adsorption energies on the CuS(001) surface with Cu–S termination are ordered as HgCl2 < CdCl2 < PbCl2. Conversely, for the CuS(001) surface with S–S termination, the sequence is 22 < PbCl2 < CdCl2. This investigation into the adsorbate–surface interactions suggests that CuS is a promising candidate for the adsorption of these heavy metal molecules.
Rocznik
Strony
5--11
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • UNESCO-UNISA-ITL Africa Chair in Nanoscience and Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa
Bibliografia
  • [1] PACYNA E.G., PACYNA J.M., STEENHUISEN F., WILSON S., Global anthropogenic mercury emission inventory for 2000, Atmos. Environ., 2006, 40 (22), 4048–4063. DOI: 10.1016/j.atmosenv.2006.03.041.
  • [2] YANG J., ZHAO Y., GUO X., LI H., ZHANG J., ZHENG C., Removal of elemental mercury from flue gas by recyclable CuCl2 modified magnetospheres from fly ash. Part 4. Performance of sorbent injection in an entrained flow reactor system, Fuel, 2018, 220, 403–411. DOI: 10.1016/j.fuel.2018.01.132.
  • [3] LI H., WU C.-Y., YING LI Y., ZHANG J., CeO2–TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas, Environ. Sci. Technol., 2011, 45, 17, 7394–7400. DOI: 10.1021/es2007808.
  • [4] ZOU S., LIAO Y., XIONG S., HUANG N., GENG Y., YANG S., H2S-modified Fe–Ti spinel: A recyclable magnetic sorbent for recovering gaseous elemental mercury from flue gas as a Co-benefit of wet electrostatic precipitators, Environ. Sci. Technol., 2017, 51 (6), 3426–3434. DOI: 10.1021/acs.est.6b05765.
  • [5] YANG J., ZHAO Y., ZHANG S., LIU H., CHANG L., MA S., ZHANG J., ZHENG C., Mercury removal from flue gas by magnetospheres present in fly ash: Role of iron species and modification by HF, Fuel Proc. Technol., 2017, 167, 263–270. DOI: 10.1016/j.fuproc.2017.07.016.
  • [6] LIU S., WANG Y., YU L., OAKEY J., Thermodynamic equilibrium study of trace element transformation during underground coal gasification, Fuel Proc. Technol., 2006, 87 (3), 209–215. DOI: 10.1016 /j.fuproc.2005.07.006.
  • [7] FURIMSKY E., Characterization of trace element emissions from coal combustion by equilibrium calculations, Fuel Proc. Technol., 2000, 63 (1), 29–44. DOI: 10.1016/S0378-3820 (99)00067-3.
  • [8] GLAZER M.P., KHAN N.A., DE JONG W., SPLIETHOFF H., SCHÜRMANN H., MONKHOUSE P., Alkali metals in circulating fluidized bed combustion of biomass and coal: Measurements and chemical equilibrium analysis, Energy Fuels, 2005, 19 (5), 1889–1897. DOI: 10.1021/ef0500336.
  • [9] XU M., YAN R., ZHENG C., QIAO Y., HAN J., SHENG C., Status of trace element emission in a coal combustion process: A review, Fuel Proc. Technol., 2004, 85 (2–3), 215–237. DOI: 10.1016/S0378-3820 (03)00174-7.
  • [10] LINAK W.P., WENDT J.O.L., Toxic metal emissions from incineration: Mechanisms and control, Prog. Energy Combust. Sci., 1993, 19 (2), 145–185. DOI: 10.1016/0360-1285 (93)90014-6.
  • [11] LI H., ZHU L., WANG J., LI L., SHIH K., Development of nano-sulfide sorbent for efficient removal of elemental mercury from coal combustion fuel gas, Environ. Sci. Technol., 2016, 50, 17, 9551–9557. DOI: 10.1021/acs.est.6b02115.
  • [12] WELEGERGS G.G., NUMAN N., DUBE S., NURU Z., BOTHA N., AZIZI S., CLOETE K., AKBARI M., MORAD R., TSEGAY M.G., GEBRETINSAE H., MTSHALI C., KHUMALO S., EZEMA F.I., KRIEF A., GIBAUD A., HENINI M., SEOPELA M.P., CHAKER M., MAAZA M., Room temperature surface bio-sulfurisation via natural sativum annilin and bioengineering of nanostructured CuS/Cu2S, Nano-Horizons: J. Nanosci. Nanotech-nol., 2023, 2. DOI: 10.25159/NanoHorizons.45486dad4f94.
  • [13] KANAANI A., AKBARI M., VAKILI M., MORAD R., AJLOO D., MAAZA M., Transition metals doped ZnS nanocluster for carbon monoxide detection: A DFT study, Mater. Today Commun., 2023, 34, 105491. DOI: 10.1016/j.mtcomm.2023.105491.
  • [14] MORAD R., AKBARI M., MAAZA M., Theoretical study of chemical reactivity descriptors of some repurposed drugs for COVID-19, MRS Advances, 2023, 8 (11), 656–660. DOI: 10.1557/s43580-023-00590-6.
  • [15] AKBARI M., MORAD R., MAAZA M., Effect of silver nanoparticle size on interaction with artemisinin: first principle study, Res. Surf. Interf., 2023, 11, 100104. DOI: 10.1016/j.rsurfi.2023.100104.
  • [16] VAKILI M., KHEIRABADI R., AKBARI M., MORAD R., MAAZA M., Computational studies of chalcogen doped on graphene vs. chalcogen doped on CNT and their role in the catalytic performance of electrochemical CO2 reduction, Mater. Today Commun., 2023, 35, 105631. DOI: 10.1016/j.mtcomm.2023.105631.
  • [17] MORALES-GARCÍA A., HE J., SOARES A.L., DUARTE H.A., Surfaces and morphologies of covellite (CuS) nanoparticles by means of ab initio atomistic thermodynamics, CrystEngComm, 2017, 19, 3078–3084. DOI: 10.1039/C7CE00203C.
  • [18] PERDEW J.P., BURKE K., ERNZERHOF M., Generalized gradient approximation made simple, Phys. Rev. Lett., 1996, 77, 3865. DOI: 10.1103/PhysRevLett.77.3865.
  • [19] GRIMME S., ANTONY J., EHRLICH S., KRIEG H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys., 2010, 132, 154104. DOI: 10.1063/1.3382344.
  • [20] GRIMME S., EHRLICH S., GOERIGK L., Effect of the damping function in dispersion corrected density functional theory, J. Comput. Chem., 2011, 32, 1456. DOI: 10.1002/jcc.21759.
  • [21] SCANDOLO S., GIANNOZZI P., CAVAZZONI C., DE GIRONCOLI S., PASQUARELLO A., BARONI S., First-principles codes for computational crystallography in the Quantum-ESPRESSO package, Z. Kristallogr. Cryst. Mater., 2009, 220 (5–6). DOI: 10.1524/zkri.220.5.574.65062.
  • [22] MONKHORST H.J., PACK J.D., Special points for Brillouin-zone integrations, Phys. Rev. B, 1976, 13, 5188. DOI: 10.1103/PhysRevB.13.5188.
  • [23] FRISCH M.J., TRUCKS G.W., SCHLEGEL H.B. et al., Gaussian 16, Revision B.01, Gaussian Inc., Wallingford, CT, 2016.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c062eff9-9416-4ebe-8018-23007b370f3e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.