PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Epithermal Cu mineralization in the Stary Lesieniec rhyodacite quarry, Lower Silesia : primary and secondary mineral paragenesis

Treść / Zawartość
Identyfikatory
Języki publikacji
EN
Abstrakty
EN
Primary epithermal and secondary Cu mineralization in the Stary Lesieniec rhyodacite quarry, located within the Intra-Sudetic Depression, was studied using reflected light microscopy, powder X-ray diffraction, and electron microprobe. Samples containing copper sulphides, baryte, and secondary weathering minerals were collected from mineralized veinlets in the Upper Carboniferous rhyodacite. Copper sulphides (chalcocite Cu2S, djurleite Cu31S16, anilite Cu7S4 / digenite Cu9S5, and covellite CuS) are the major ore minerals and are associated with quartz, hematite, and very minor uraninite. The samples studied indicate phase transformation from chalcocite to anilite, which indicates that Cu sulphides began to crystallize at ~100°C. Then, during the epithermal stage of precipitation, the temperature of the solutions dropped <72°C, based on the Cu-S ternary diagram and anilite stability. Admixtures of Ag, Fe, Bi, and Se in the sulphides are very minor. Supergene paragenesis is represented by chrysocolla with minor brochantite and very scarce malachite. These only bear trace impurities at the anionic sites. The supergene oxidation process began with the formation of abundant chrysocolla, at a relatively neutral pH. After dropping of the pH to ~4-6, brochantite was deposited.
Rocznik
Strony
art. no. 43
Opis fizyczny
Bibliogr. 92 poz., fot., rys., wykr.
Twórcy
  • AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • Polish Academy of Sciences, Institute of Geological Sciences, Twarda 51/55, 00-818 Warszawa, Poland
  • AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • 1. Alwan, A.K., Williams, P.A., 1979. Mineral formation from aqueous solution. Part II. The stability of langite, Cu2SO4(OH)6H2O. Transition Metal Chemistry, 4: 319-322.
  • 2. Anthony, J.W., Bideaux, R.A., Bladh, K.W., Nichols, M.C., 2003. Handbook of Mineralogy, 5. Borates, Carbonates, Sulfates. Mineral Data Publishing, Tucson.
  • 3. Awdankiewicz, M., 1998. Volcanism in a late Variscan intramontane trough: Carboniferous and Permian volcanic centres of the Intra-Sudetic Basin, SW Poland. Geologia Sudetica, 32: 13-47.
  • 4. Awdankiewicz, M., 1999. Volcanism in a late Variscan intramontane trough: the petrology and geochemistry of the Carboniferous and Permian volcanic rocks of the Intra-Sudetic Basin, SW Poland. Geologia Sudetica, 32: 83-111.
  • 5. Awdankiewicz, M., Kurowski, L., Mastalerz, K., Raczyński, P., 2003. The Intra-Sudetic Basin - a record of sedimentary and volcanic processes in late- to post-orogenic tectonic setting. Geolines, 16: 165-183.
  • 6. Belogub, E.V., Novoselov, K.A., Yakovleva, V.A., Spiro, B., 2008. Supergene sulphides and related minerals in the supergene profiles of VHMS deposits from the South Urals. Ore Geology Reviews, 33: 239-254.
  • 7. Bridges, T.T., Green, D.J., 2007. Zoned oxidation deposit in Tynebottom Mine, Garrigill, Cumbria. Journal of the Russell Society, 10: 2-9.
  • 8. Cabral, A.R., Beaudoin, G., 2007. Volcanic red-bed copper mineralisation related to submarine basalt alteration, Mont Alexandre, Quebec Appalachians, Canada. Mineralium Deposita, 42: 901-912.
  • 9. Cook, W.R., 1972. Phase changes in Cu2S as a function of temperature. National Bureau of Standards Publication, 364: 703-712.
  • 10. Crane, M.J., Sharpe, J.L., Williams, P.A., 2001. Formation of chrysocolla and secondary copper phosphates in the highly weathered supergene zones of some Australian deposits. Records-Australian Museum, 53: 49-56.
  • 11. Cui, C.L., Li, Q., Zhang, D., Wang, X.L., Wu, T., Zhang, L., Yi, F.C., 2015. Formation conditions of uraninite and mineralogical analysis in uranium-containing waste water. Journal of Chengdu University of Technology, 1: 122-128.
  • 12. Dalstra, H., Guedes, S., 2004. Giant hydrothermal hematite deposits with Mg-Fe metasomatism: a comparison of the Carajás, Hamersley, and other iron ores. Economic Geology, 99: 1793-1800.
  • 13. Dumańska-Słowik, M., Natkaniec-Nowak, L., Kotarba, M.J., Sikorska, M., Rzymełka, J.A., Łoboda, A., Gaweł, A., 2008. Mineralogical and geochemical characterization of the “bituminous” agates from Nowy Kościół (Lower Silesia, Poland). Neues Jahrbuch für Mineralogie, 184: 255-268.
  • 14. Emetz, A., Piestrzyński, A., Zagnitko, V., Pryhodko, L., Gaweł, A., 2006. Geology, mineralogy and origin of Zhyrychi native copper deposit (North-Western Ukraine). Annales Societatis Geologorum Poloniae, 76: 297-314.
  • 15. Eriksson, P.G., Altermann, W., Nelson, D.R., Mueller, W.U., Catuneanu, O., 2004. Evolution of the Hydrosphere and Atmosphere. Developments in Precambrian Geology, 12: 359-511.
  • 16. Estep, C., 2012. Compounds of Uranium and Fluorine (Chemical Compounds). Research World, Delhi, India.
  • 17. Evans, H.T., 1981. Copper coordination in low chalcocite and djurleite and other copper-rich sulfides. American Mineralogist, 66: 807-818.
  • 18. Farges, F., Benzerara, K., Brown, G.E. Jr., 2007. Chrysocolla Redefined as Spertiniite. 13th International Conference On X-Ray Absorption Fine Structure (XAFS13), July 9-14, Stanford, California, SLAC-PUB-12332. doi: 10.1063/1.2644481.
  • 19. Ferenc, Š., Rojkovič, I., 2001. Copper mineralization in the Permian basalts of the Hronicum unit, Slovakia. Geolines, 13: 22-27.
  • 20. Frost, R.L., Xi, Y., 2013. Is chrysocolla (Cu,Al)2H2Si2O6(OH)4 · nH2O related to spertiniite Cu(OH)2?- a vibrational spectroscopic study. Vibrational Spectroscopy, 64: 33-38.
  • 21. Frost, R.L., Xi, Y., Wood, B.J., 2012. Thermogravimetric analysis, PXRD, EDS and XPS study of chrysocolla (Cu,Al)2H2Si2O5(OH)4 nH2O - structural implications. Thermochimica Acta, 545: 157-162.
  • 22. Gablina, I.F., Semkova, T.A., Stepanova, T.V., Gor'kova, N.V., 2006. Diagenetic alterations of copper sulfides in modern ore-bearing sediments of the Logatchev-1 hydrothermal field (Mid-Atlantic Ridge 14 45' N). Lithology and Mineral Resources, 41: 27-44.
  • 23. Gijsemans, L., Roosen, J., Riańo, S., Jones, P.T., Binnemans, K., 2020. Ammoniacal solvoleaching of copper from high-grade chrysocolla. Journal of Sustainable Metallurgy, 6: 589-598.
  • 24. Goble, R.J., 1980. Copper sulphides from Alberta: yarrowite Cu9S8 and spionkopite Cu39S28. Canadian Mineralogist, 18: 511-518.
  • 25. Goble, R.J., 1981. The leaching of copper from anilite and production of a metastable copper sulfide structure. Canadian Mineralogist, 19: 583-591.
  • 26. Goble, R.J., Robinson, G., 1981. Geerite Cu1.6S, a new copper sulfide from Dekalb township, New York. Canadian Mineralogist, 18: 519-523.
  • 27. Gołębiowska, B., Matyszkiewicz, J., Molenda, R., Górny, A., 2006. Hydrothermal mineralization in Middle Jurassic sandy limestones from Zalas (near Cracow, S Poland). Mineralogia Polonica, Special Papers, 28: 81-83.
  • 28. Grocholski, A., 1965. The volcanic rocks in the Walbrzych Basin in the light of structural studies (in Polish with English summary). Biuletyn Instytutu Geologicznego, 191: 5-67.
  • 29. Grocholski, A., 1973. Szczegółowa mapa geologiczna Sudetów 1:25 000, arkusz Mieroszów (in Polish). Wyd. Geol., Warszawa.
  • 30. Hariu, T., Arima, H., Sugiyama, K., 2013. The structure of hydrated copper-silicate gels, an analogue compound for natural chrysocolla. Journal of Mineralogical and Petrological Sciences, 108: 111-115.
  • 31. Hatert, F., 2005. Transformation sequences of copper sulfides at Vielsalm, Stavelot Massif, Belgium. Canadian Mineralogist, 43: 623-635.
  • 32. Herrera-Urbina, H., Laskowski, J.S., Fuerstenau, D., 2010. A proces for the flotation of chrysocolla. XXV International mineral processing congress - IMP 2010. Congress Proceedings, Australasian Institute of Mining and Metallurgy, Brisbane: 1959-1969.
  • 33. Holub, V.M., 1976. Permian basins in the Bohemian Massif. In: The Continental Permian in Central, West, and South Europe (ed. H. Falke): 53-79. Dordrecht.
  • 34. Kettanah, Y.A., 2019. Copper mineralization and alterations in Gercus Basalt within the Gercus Formation, northern Iraq. Ore Geology Reviews, 111: 102974.
  • 35. Konari, M.B., Rastad, E., Kojima, S., Omran, N.R., 2013. Volcanic redbed-type copper mineralization in the Lower Cretaceous volcano-sedimentary sequence of the Keshtmahaki deposit, southern Sanandaj-Sirjan Zone, Iran. Neues Jahrbuch für Mineralogie-Abhandlungen, 190: 107-121.
  • 36. Kozłowski, S., 1958. Permian volcanism in the area of Głuszyca and Świerki (Lower Silesia, Poland) (in Polish with English summary). Annales Societatis Geologorum Poloniae, 28: 5-61.
  • 37. Kozłowski, S., 1963. The geology of Permian volcanites in the central part of the inner Sudetic depression (Lower Silesia) (in Polish with English summary). Prace Geologiczne, 14: 3-84.
  • 38. Krawczyński, W., 1995. Native copper in agates from Rudno near Krzeszowice. Mineralogia Polonica, 26: 27-32.
  • 39. Kruszewski, Ł., 2008. Apatite-ellestadite solid solution and associated minerals of metacarbonate slags from burning coal dump in Rydułtowy (Upper Silesia). Mineralogia Special Papers, 32: 100.
  • 40. Kruszewski, Ł., 2013. Supergene sulphate minerals from the burning coal mining dumps in the Upper Silesian Coal Basin, South Poland. International Journal of Coal Geology, 105: 91-109.
  • 41. Kruszewski, Ł., Siuda, R., Kosałka, P., Żochowski, P., Marciniak-Maliszewska, B., Deput, E., 2019. Copper and manganese minerals from „Hans” mine in Przygórze (Lower Silesia, SW Poland) - preliminary results. Mineralogia Special Papers, 49: 56.
  • 42. Large, D.J., MacQuaker, J., Vaughan, D.J., Sawłowicz, Z., Gize, A.P., 1995. Evidence for low-temperature alteration of sulfides in the Kupferschiefer copper deposits of southwestern Poland. Economic Geology, 90: 2143-2155.
  • 43. Lorenz, V., Nicholls, I.A., 1976. The Permo-carboniferous basin and range province of Europe. An application of plate tectonics. In: The Continental Permian in Central, West and South Europe (ed. H. Falke): 313-342. Springer International Publishing, Dordrecht.
  • 44. Marani, D., Patterson, J.W., Anderson, P.R., 1995. Alkaline precipitation and aging of Cu(II) in the presence of sulfate. Water Research, 29: 1317-1326.
  • 45. Mathur, R., Falck, H., Belogub, E., Milton, J., Wilson, M., Rose, A., Powell, W., 2018. Origins of chalcocite defined by copper isotope values. Geofluids, 2018; doi: 10.1155/2018/5854829.
  • 46. McKeown, D.A., 1994. X-ray absorption spectroscopic study of copper in an amorphous copper silicate: chrysocolla. Journal of Non-crystalline Solids, 180: 1-10.
  • 47. Mederski, S., Pršek, J., Niemasz, Ż., 2020. Geochemistry of tetrahedrite group minerals and associated silver paragenesis in the Boguszów baryte deposit, Poland. Geological Quarterly, 64 (4): 958-968.
  • 48. Miecznik, J.B.,1989. Uranium mineralization in the Permo-Carboniferous of the Intra-Sudetic Depression (in Polish with English summary). Przegląd Geologiczny, 37: 485-488.
  • 49. Migaszewski, Z., 1972. Mineralizacja kruszcowa w złożu barytu w Boguszowie (in Polish). Rudy i Metale Nieżelazne, 9: 425-428.
  • 50. Mikulski, S., 2005. Geological, mineralogical and geochemical characteristics of the Radzimowice Au-As-Cu deposit from the Kaczawa Mts. (Western Sudetes, Poland) - an example of the transition of porphyry and epithermal style. Mineralium Deposita, 39: 904-920.
  • 51. Mikulski, S.Z., Williams, I.S., 2014. Zircon U-Pb dating of igneous rocks in the Radzimowice and Wielisław Złotoryjski auriferous polymetallic deposits, Sudetes, SW Poland. Annales Societatis Geologorum Poloniae, 84: 213-233.
  • 52. Mikulski, S.Z., Oszczepalski, S., Sadłowska, K., Chmielewski, A., Małek, R., 2020. Trace element distributions in the Zn-Pb (Mississippi Valley-type) and Cu-Ag (Kupferschiefer) sediment-hosted deposits in Poland. Minerals, 10, 75.
  • 53. Mochnacka, K., Oberc-Dziedzic, T., Mayer, W., Pieczka, A., 2012. Ore mineralization in the Miedzianka area (Karkonosze-Izera Massif, the Sudetes, Poland): new information. Mineralogia, 43: 155-178.
  • 54. Morimoto, N., Koto, K., 1970. Phase relations of the Cu-S system at low temperatures: stability of anilite. American Mineralogist, 55: 106-117.
  • 55. Morimoto, N., Koto, K., Shimazaki, Y., 1969. Anilite, Cu7S4, a new mineral. American Mineralogist: Journal of Earth and Planetary Materials, 54: 1256-1268.
  • 56. Nemec, W., 1979. Wulkanizm późnokarboński w niecce wałbrzyskiej (synklinorium śródsudeckie) (in Polish). PhD Thesis, Uniwersytet Wrocławski, Wrocław.
  • 57. Németh, N., Földessy, J., Turi, J., 2017. Ore geology of the copper sulfide mineralization in the Rudabánya ore-bearing complex. Central European Geology, 60: 53-72.
  • 58. Nikol, M.J., Akilan, C., 2018. The kinetics of the dissolution of chrysocolla in acid solutions. Hydrometallurgy, 178: 7-11.
  • 59. Palyanova, G., Sidorov, E., Borovikov, A., Seryotkin, Y., 2020. Copper-containing agates of the Avacha Bay (Eastern Kamchatka, Russia). Minerals, 10, 1124.
  • 60. Parafiniuk, J., Siuda, R., Borkowski, A., 2016. Sulphate and arsenate minerals as environmental indicators in the weathering zones of selected ore deposits, Western Sudetes, Poland. Acta Geologica Polonica, 66: 493-508.
  • 61. Pawley, G.S., 1980. EDINP, the Edinburgh powder profile refinement program. Journal of Applied Crystallography, 13: 630-633.
  • 62. Pieczonka, J., Piestrzyński, A., Lenik, P., Czerw, H., 2007. Distribution of ore minerals in the copper deposit, Fore-Sudetic Monocline, SW Poland. Biuletyn Państwowego Instytutu Geologicznego, 423: 95-108.
  • 63. Piestrzyński, A., Kowalik, K., 2015. Argentopentlandite from baryte vein in Zagórze Śląskie, Lower Silesia, a first occurrence in Poland. Mineralogia, 45: 13-25.
  • 64. Plewa, M., 1965. Hematytyzacja intruzywnych skał „porfirowych” i towarzyszących im dolomitów, występujących w kopalni Mieszko w Wałbrzychu (in Polish). Sprawozdania z Posiedzeń Komisji PAN Oddziału w Krakowie, 8: 502-505.
  • 65. Pohjolainen, E., 2015. Uranium deposits of Finland. In: Mineral Deposits of Finland (eds. W.D. Maier, R. Lahtinen and H. O'Brien). Elsevier.
  • 66. Potter, R.W., 1977. An electrochemical investigation of the system copper-sulfur. Economic Geology, 72: 1524-1542.
  • 67. Powolny, T., Dumańska-Słowik, M., Sikorska-Jaworowska, M., Wójcik-Bania, M., 2019. Agate mineralization in spilitized Permian volcanics from “Borówno” quarry (Lower Silesia, Poland) - microtextural, mineralogical, and geochemical constraints. Ore Geology Reviews, 114: 103130.
  • 68. Pósfai, M., Buseck, P.R., 1994. Djurleite, digenite, and chalcocite: Intergrowths and transformations. American Mineralogist, 79: 308-315.
  • 69. Pršek, J., Mederski, S., Kowalczyk, D., 2019. Ag-Sb-Pb-Cd mineral paragenesis in the baryte veins: example from the Sowie Mountains, Poland. Life with Ore Deposits on Earth. 15th Biennial SGA Meeting, 27-30 August 2019, Glasgow, 1: 455-458.
  • 70. Rietveld, H.M., 1967. Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallographica, 22: 151-152.
  • 71. Rojkovič, I., 1990. Ore bearing Permian volcanism in the Western Carpathians. Acta Geologica et Geographica Universitatis Comenianae. Geologica, 45: 71-88.
  • 72. Rojkovič, I., Novotny, L., Háber, M., 1993. Stratiform and vein U, Mo and Cu mineralization in the Novoveská Huta area, CSFR. Mineralium Deposita, 28: 58-65.
  • 73. Roseboom, E.H., 1966. An investigation of the system Cu-S and some natural copper sulfides between 25° and 700°C. Economic Geology, 61: 641-672.
  • 74. Sawłowicz, Z., 1990. Primary copper sulphides from the Kupferschiefer, Poland. Mineralium Deposita, 25: 262-271.
  • 75. Schlomovitch, N., Bar-Matthews, M., Segev, A., Matthews, A., 1999. Sedimentary and epigenetic copper mineral assemblages in the Cambrian Timna Formation, southern Israel. Israel Journal of Earth Sciences, 48: 195-208.
  • 76. Schmidt, J.A., Sagua, A.E., Lescano, G., 1998. Electrochemical investigation of the equilibria (covellite + anilite) and (covellite + digenite). The Journal of Chemical Thermodynamics, 30: 283-290.
  • 77. Sillitoe, R.H., Clark, A.H., 1969. Copper and copper-iron sulfides as the initial products of supergene oxidation, Copiapó mining district, northern Chile. American Mineralogist, 54: 1684-1710.
  • 78. Siuda, R., Gołębiowska, B., 2011. New data on supergene minerals from Miedzianka-Ciechanowice deposit in the Rudawy Janowickie Mountains (Lower Silesia, Poland) (in Polish with English summary). Przegląd Geologiczny, 59: 226-234.
  • 79. Siuda, R., Kruszewski, Ł. 2006. New data on bayldonite, cornwallite, olivenite and philipsburgite from Miedzianka (Rudawy Janowickie Mts., Sudetes, Poland). Mineralogia Polonica, Special Papers, 28: 202-204.
  • 80. Siuda, R., Kruszewski, Ł., 2013. Recently formed secondary copper minerals as indicators of geochemical conditions in an abandoned mine in Radzimowice (SW Poland). Geological Quarterly, 57 (4): 583-600.
  • 81. Siwecki T., 2017. Copper mineralization in agates from Sokołowiec (in Polish with English summary). M.Sc. Thesis, AGH.
  • 82. Sun, S., Konhauser, K., Kappler, A., Li, Y.L., 2015. Primary hematite in Neoarchean to Paleoproterozoioc oceans. GSA Bulletin, 127: 850-861.
  • 83. Swęd, M., Urbanek, P., Krechowicz, I., Dworczak, P., Wiecka, P., Mleczak, M., Tobys, P., 2015. Mineralogy of weathering heaps in the Miedzianka deposits (Holy Cross Mountains) (in Polish with English summary). Przegląd Geologiczny, 63: 363-372.
  • 84. Sylwestrzak, H., 1972. Geochemistry of uranium in the young Palaeozoic volcanicrocks of Lower Silesia basing on their general geochemical differences. Biuletyn Państwowego Instytutu Geologicznego, 259: 5-92.
  • 85. Szopa, K., Krzykawski, R., Banasik, K., Król, P., Skreczko, S., Mounteanou, S.A., Koziarska, M., 2021. EMPA, XRD, and Raman characterization of Ag-bearing djurleite from the Lubin Mine, Lower Silesia, Poland. Minerals, 11, 454.
  • 86. Tadic, M., Trpkov, D., Kopanja, L., Vojnovic, S., Panjan, M., 2019. Hydrothermal synthesis of hematite (α-Fe2O3) nanoparticle forms: synthesis conditions, structure, particle shape analysis, cytotoxicity and magnetic properties. Journal of Alloys and Compounds, 792: 599-609.
  • 87. Vlasáč, J., Ferenc, Š., Mikuš, T., Polák, L., Luptáková, J., Biroň, A., 2018. Occurrence of Cu sulphidic mineralization in the Permian basalts of Hronicum Unit at Banská Bystrica (Slovak Republic) (in Czech with English summary). Bulletin Mineralogie Petrologie, 26: 176-187.
  • 88. Wieser, T., Żabiński, W., 1986. Copper arsenate and sulphate minerals from Miedzianka near Kielce (Poland). Mineralogia Polonica, 17: 17-42.
  • 89. Wodzicki, A., Piestrzyński, A., 1994. An ore genetic model for the Lubin-Sieroszowice mining district, Poland. Mineralium Deposita, 29: 30-43.
  • 90. Wojewoda, J., Mastalerz, K., 1989. Climate evolution, allo- and autocyclity of sedimentation: an example from the Permo-Carboniferous continental deposits of the sudetes, SW Poland (in Polish with English summary). Przegląd Geologiczny, 37: 173-179.
  • 91. Yuan, F., Jiang, S.Y., Liu, J., Zhang, S., Xiao, Z., Liu, G., Hu, X., 2019. Geochronology and geochemistry of uraninite and coffinite: insights into ore-forming processes in the pegmatite-hosted uraniferous province, North Qinling, Central China. Minerals, 9, 552.
  • 92. Zimnoch, E., 1978. Ore mineralization of the Miedzianka deposit in the Sudetes (in Polish with English summary). Biuletyn Instytutu Geologicznego, 308: 91-134.
Identyfikator YADDA
bwmeta1.element.baztech-c0619a3d-eef7-4b2b-a4ad-057c5357b193