PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Verifying the prediction result reliability using k-ε, eddy dissipation and discrete transfer models applied on methane combustion using a prototype low-pressure burner

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article aims to verify the accuracy of a method to simulate the combustion chamber with a low-pressure prototype burner equipped with a specific “mixing element” and air baffle. The burner has an output of 4 kW and combusts methane. In detail, the article evaluates the accuracy of the final courses of temperatures and CO concentrations in the combustion chamber, which were obtained having combined the mathematical models k-ε, Eddy Dissipation and Discrete Transfer. CFD software CFX was used for the solution and visualisation of the results. The verification measurements imply that the final course of temperature plotted on the vertical axis of the combustion chamber differs from the real course by +21.7% on average. The predicted CO concentrations are relatively satisfactory in the chamber locations with lower temperatures – at the combustion chamber outlet the deviation from the measured value was +31.8%. Overall, the applied method may be considered acceptable to simulate the thermal field in a combustion chamber with the described burner.
Słowa kluczowe
Twórcy
autor
  • VŠB – Technical University of Ostrava, Centre ENET, 17. listopadu 15, 708 33 Ostrava – Poruba, Czech Republic
  • VŠB – Technical University of Ostrava, Faculty of Mechanical Engineering, Department of Energy Engineering, 17. listopadu 15, 708 33 Ostrava – Poruba, Czech Republic
autor
  • VŠB – Technical University of Ostrava, Centre ENET, 17. listopadu 15, 708 33 Ostrava – Poruba, Czech Republic
autor
  • VŠB – Technical University of Ostrava, Faculty of Mechanical Engineering, Department of Energy Engineering, 17. listopadu 15, 708 33 Ostrava – Poruba, Czech Republic
autor
  • Technical University of Košice, Letná 9, 042 00, Košice, Slovak Republic
autor
  • Technical University of Košice, Letná 9, 042 00, Košice, Slovak Republic
Bibliografia
  • 1.Honus, S., Bocko, P., Bouda, T., Ristović, I., Vulić, M.: The effect of the number of conveyor belt carrying idlers on the failure of an impact place: A failure analysis. Eng. Fail. Anal., 77, 2017, 93–101.
  • 2.Rozylo, P., Teter, A., Debski, H., Wysmulski, P., Falkowicz, K.: Experimental and Numerical Study of the Buckling of Composite Profiles with Open Cross Section under Axial Compression. Appl. Compos. Mater. 24, 2017, 1251–1264.
  • 3.Stanova, E., Fedorko, G., Kmet, S., Molnar, V., Fabian, M.: Finite element analysis of spiral strands with different shapes subjected to axial loads. Adv. Eng. Softw. 83, 2015, 45–58.
  • 4.Gajdos, I., Slota, J., Spisak, E., Jachowicz, T., Tor-Swiatek, A.: Structure and tensile properties evaluation of samples produced by Fused Deposition Modeling. Open Eng. 6, 2016, 86–89.
  • 5.Baleta, J., Mikulčić, H., Vujanović, M., Petranović, Z., Duić, N.: Numerical simulation of urea based selective non-catalytic reduction deNOx process for industrial applications. Energy Convers. Manag. 125, 2016, 59–69.
  • 6.Mikulčić, H., von Berg, E., Vujanović, M., Wang, X., Tan, H., Duić, N.: Numerical evaluation of different pulverized coal and solid recovered fuel co-firing modes inside a large-scale cement calciner. Appl. Energy. 184, 2016, 1292–1305.
  • 7.Andersson, B., Andersson, R., Hakansson, L., Mortensen, M.: Computational Fluid Dynamics for Engineers. Cambridge University Press, 2012, 202 pages.
  • 8.Pletcher, T.H., Tannehill, J.C., Anderson, D.: Computational Fluid Mechanics and Heat Transfer. Taylor & Francis, 2011.
  • 9.Pozrikidis, C.: Introduction to Theoretical and Computational Fluid Dynamics. Oxford University Press, 2011.
  • 10.Yeoh, G.H., Yuen, K.K.: Computational Fluid Dynamics in Fire Engineering: Theory, Modelling and Practice. Butterworth-Heinemann, 2009.
  • 11.Yan, L., Yue, G., He, B.: Application of an efficient exponential wide band model for the natural gas combustion simulation in a 300 kW BERL burner furnace. Appl. Therm. Eng. 94, 2016, 209–220.
  • 12.Tyliszczak, A., Boguslawski, A., Nowak, D.: Numerical simulations of combustion process in a gas turbine with a single and multi-point fuel injection system. Appl. Energy. 174, 2016, 153–165.
  • 13.Andreini, A., Cerutti, M., Facchini, B., Innocenti, A.: CFD analysis of NOx emissions of a natural gas lean premixed burner for heavy duty gas turbine. In: Energy Procedia. 81, 2015, 967–976.
  • 14.Mayr, B., Prieler, R., Demuth, M., Potesser, M., Hochenauer, C.: CFD and experimental analysis of a 115 kW natural gas fired lab-scale furnace under oxy-fuel and air-fuel conditions. Fuel. 159, 2015, 864–875.
  • 15.Gómez, M.A., Porteiro, J., Patiño, D., Míguez, J.L.: Eulerian CFD modelling for biomass combustion. Transient simulation of an underfeed pellet boiler. Energy Convers. Manag. 101, 2015, 666–680.
  • 16.Příhoda, J., Louda, P.: Matematické modelování turbulentního proudění. CVUT Prague, 2007.
  • 17.ANSYS CFX-Solver Theory Guide. ANSYS, Inc., 2009.
  • 18.Jelemenský, K., Šesták, J., Žitný, R.: Tepelné pochody. STU Bratislava, 2000.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c05ea3f6-11c8-431a-857c-25fefbbc8717
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.