Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Artificial intelligence has proven to be a key tool to improve the efficiency of video surveillance systems, contributing to public safety. This systematic review aims to analyze the contributions of Artificial Intelligence in this field, in line with Sustainable Development Goal 16 (SDG 16), which promotes peaceful and inclusive societies. 145 articles extracted from major databases such as Scopus, WOS, ProQuest, EBSCO, IEEE Xplore, and ScienceDirect were analyzed. Using PRISMA methodology, inclusion and exclusion criteria were applied, resulting in 42 articles relevant to the review. The findings indicate that the use of advanced AI technologies, such as the Internet of Things, Computer Vision, and Edge Computing, are the most integrated with artificial intelligence, enhancing its capabilities in video surveillance systems. In this framework, Deep Learning stands out as an essential basis for optimizing these applications. Finally, the results of this review provide a solid foundation for future research on the use of Artificial Intelligence in video surveillance. The technologies evaluated have the potential to further contribute to the improvement of security and operational efficiency in different contexts and environments.
Wydawca
Rocznik
Tom
Strony
389--405
Opis fizyczny
Bibliogr. 62 poz., fig., tab.
Twórcy
- Facultad de Ingeniería, Universidad Privada del Norte, Lima, Perú
autor
- Facultad de Ingeniería, Universidad Privada del Norte, Lima, Perú
autor
- Facultad de Ingeniería, Universidad Privada del Norte, Lima, Perú
Bibliografia
- 1. Naciones Unidas. Paz y justicia - Desarrollo Sostenible [Internet]. 2023 [2024 Oct 16]. Available from: https://www.un.org/sustainabledevelopment/es/peace-justice/.
- 2. Banco Interamericano de Desarrollo. Seguridad ciudadana en América Latina y el Caribe [Internet]. 2018. Available from: http://www.iadb.org.
- 3. EU - European Union. Defining artificial intelligence: towards an operational definition and taxonomy of artificial intelligence. 2020 [2024 Oct 16]. Available from: https://op.europa.eu/en/publication-detail/-/publication/6cc0f1b6-59dd-11ea-8b81-01aa75ed71a1/language-en.
- 4. Gutt J, Kaczor M, Paleta G, Polec K, Stiborski K, Strzępek F, et al. Artificial intelligence you only look once – based unmanned aerial system for remote sensing in security surveillance. Advances in Science and Technology Research Journal. 2024 Jan 1; 18(7): 364–78.
- 5. Bojanowska AB, Kulisz M, Infante-Moro A. Management decision making in a retail establishment using machine learning methods. Advances in Science and Technology Research Journal. 2024 Jan 1;18(7): 460–74.
- 6. CAF y OEA. Soluciones a la seguridad en las ciudades de América Latina. 2021 [2024 Oct 16]. Available from: https://www.caf.com/es/actualidad/noticias/2021/08/caf-y-oea-se-unen-para-buscar-soluciones-a-la-seguridad-en-las-ciudades-de-america-latina/.
- 7. UNESCO. Inteligencia Artificial. [2024 Oct 16]. Available from: https://www.unesco.org/es/artificial-intelligence.
- 8. Oscar M. Morales LAFBJFBV. Revista de Pensamiento Estratégico y Seguridad CISDE. 2023 [2024 Oct 16]. La Inteligencia Artificial como apoyo a la gestión de la seguridad ciudadana: un estado del arte. Available from: http://www.uajournals.com/ojs/index.php/cisdejournal/article/view/1227.
- 9. Denyer D, TD. The Sage handbook of organizational research methods. 2009 [2024 Oct 16]. p. 671–89 Producing a systematic review. Available from: https://psycnet.apa.org/record/2010-00924-039.
- 10. Humana Dietética N, Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Revista Española de Nutrición Humana y Dietética. 2016 Feb 18 [2024 Oct 16]; 20(2): 148–60. https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S2174-51452016000200010&lng=es&nrm=iso&tlng=es.
- 11. MacMillan F, McBride KA, George ES, Steiner GZ. Conducting a systematic review: A practical guide. In: Handbook of Research Methods in Health Social Sciences. Springer Singapore; 2019. p. 805–26.
- 12. Yepes-Nuñez JJ, Urrútia G, Romero-García M, Alonso-Fernández S. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Rev Esp Cardiol. 2021 Sep 1 [2024 Oct 16];74(9):790–9. https://portalrecerca.uab.cat/en/publications/the-prisma-2020-statement-an-updated-guideline-for-reporting-syst.
- 13. VOSviewer. Visualizing scientific landscapes. [2024 Oct 16]. Available from: https://www.vosviewer.com/.
- 14. Alexandre Peretó-Rovira, Luis Moreno-Izquierdo, Andrés Pedreño-Muñoz. An index to measure the commitment of countries’ commitment to artificial intelligence. Vol. 98. 2020.
- 15. World Economic Forum. Emerging technologies | Here’s how venture capitalists are investing in AI in five countries. 2024 [2024 Nov 27]. https://es.weforum.org/stories/2024/06/como-esta-invirtiendo-el-capital-riesgo-en-ia-en-las-cinco-principales-economias-mundiales-y-configurando-el-ecosistema-de-la-ia/.
- 16. IDC. 2 out of 3 Organizations in Asia/Pacific are Exploring or Have Invested in Generative AI Technologies in 2023, Says IDC. 2023 [2024 Nov 27]. Available from: https://www.idc.com/getdoc.jsp?containerId=prAP50727723.
- 17. Carnegie Endowment for International Peace. AI Global Surveillance Technology. [2024 Nov 27]. Available from: https://carnegieendowment.org/features/ai-global-surveillance-technology?lang=en.
- 18. Bulelani Jili. China’s Surveillance Ecosystem & The Global Spread Of Its Tools. A City Is Not a Computer. Princeton University Press; 2022.
- 19. Amingad SC, Rahul M, Sathvik Reddy PS, Gupta NS. Enhancing Public Safety with AI-Powered Intelligent Surveillance: An Examination of Immediate Incident Detection and Rapid Response in Urban Settings. 2023 International Conference on Advances in Computation, Communication and Information Technology, ICAICCIT 2023. 2023;205–10.
- 20. Zhou X, Xu X, Liang W, Zeng Z, Yan Z. Deep-Learning-Enhanced Multitarget Detection for End-Edge-Cloud Surveillance in Smart IoT. IEEE Internet Things J. 2021 Aug 15;8(16):12588–96.
- 21. Ullah FUM, Muhammad K, Haq IU, Khan N, Heidari AA, Baik SW, et al. AI-assisted edge vision for violence detection in IoT-based industrial surveillance networks. IEEE Trans Industr Inform. 2022 Aug 1;18(8):5359–70.
- 22. Saba T, Rehman A, Latif R, Fati SM, Raza M, Sharif M. Suspicious Activity Recognition Using Proposed Deep L4-Branched-Actionnet with Entropy Coded Ant Colony System Optimization. IEEE Access. 2021;9:89181–97.
- 23. Jadhav C, Ramteke R, Somkunwar RK. Smart Crowd Monitoring and Suspicious Behavior Detection Using Deep Learning. Revue d’Intelligence Artificielle. 2023 Aug 1 [2024 Oct 17];37(4):955. Available from: https://openurl.ebsco.com/contentitem/doi:10.18280%2Fria.370416?sid=ebsco:plink:crawler&id=ebsco:doi:10.18280%2Fria.370416.
- 24. Subha Devi MT, Dhanalakshmi M, Sowrabha A, Sowmya ML, Lavanya N. Anomaly Detection in Video Surveillance. 2024 IEEE 9th International Conference for Convergence in Technology, I2CT 2024.
- 25. Raisinghani M, Sawra R, Dhavalikar O, Chhabria P, Giri N. Crime Analysis Using Artificial Intelligence. Lecture Notes in Electrical Engineering. 2022 [2024 Oct 17];869:33–42. https://link.springer.com/chapter/10.1007/978-981-19-0019-8_3.
- 26. Wang H, Fei F, Zhu Y, Hwang IC, Kang HS. Anomaly Detection Based on a 3D Convolutional Neural Network Combining Convolutional Block Attention Module Using Merged Frames. Sensors 2023, Vol 23, Page 9616. 2023 Dec 4 [2024 Oct 17];23(23):9616. https://www.mdpi.com/1424-8220/23/23/9616/htm.
- 27. Yasin A, Tahir SB ud din, Frnda J, Fatima R, Ali Khan J, Anwar MS. Anomaly Prediction over Human Crowded Scenes via Associate-Based Data Mining and K-Ary Tree Hashing. International Journal of Intelligent Systems. 2023 Jan 1 [2024 Oct 17];2023(1):9822428. https://onlinelibrary.wiley.com/doi/full/10.1155/2023/9822428.
- 28. Ul Amin S, Kim B, Jung Y, Seo S, Park S. Video Anomaly Detection Utilizing Efficient Spatiotemporal Feature Fusion with 3D Convolutions and Long Short-Term Memory Modules. Advanced Intelligent Systems. 2024 Jul 1 [2024 Oct 17];6(7):2300706. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/aisy.202300706.
- 29. Dilek E, Dener M. Enhancement of Video Anomaly Detection Performance Using Transfer Learning and Fine-Tuning. IEEE Access. 2024;12:73304–22.
- 30. Kwon B, Kim T. Toward an Online Continual Learning Architecture for Intrusion Detection of Video Surveillance. IEEE Access. 2022;10:89732–44.
- 31. Kim G Il, Yoo H, Chung K. Slowfast based real-time human motion recognition with action localization. Computer Systems Science and Engineering. 2023;47(2):2135–52.
- 32. Alam F, Alraeesi A. Computer Vision Based Smart CCTV Solution. Society of Petroleum Engineers - ADIPEC 2022. 2022 Oct 31 [2024 Oct 17]; Available from: https://dx.doi.org/10.2118/211842-MS
- 33. Muthurasu N. Unveiling anomalies in crowds through advanced deep learning for unusual activity detection. J Theor Appl Inf Technol [Internet]. 2024;15(5). Available from: www.jatit.org
- 34. Sujatha E, Janani D. Real Time Activity Monitoring Using Deep Learning. 2024 5th International Conference on Innovative Trends in Information Technology, ICITIIT 2024. 2024.
- 35. Al-E’mari S, Sanjalawe Y, Alqudah H. Integrating Enhanced Security Protocols with Moving Object Detection: A Yolo-Based Approach for Real-Time Surveillance. 2nd International Conference on Cyber Resilience, ICCR 2024. 2024.
- 36. Amin SU, Ullah M, Sajjad M, Cheikh FA, Hijji M, Hijji A, et al. EADN: An efficient deep learning model for anomaly detection in videos. Mathematics 2022, Vol 10, Page 1555. 2022 May 5 [2024 Oct 17];10(9):1555. Available from: https://www.mdpi.com/2227-7390/10/9/1555/htm
- 37. Wang B, Yang C. Video Anomaly Detection Based on Convolutional Recurrent AutoEncoder. Sensors 2022, Vol 22, Page 4647. 2022 Jun 20 [2024 Oct 17];22(12):4647. Available from: https://www.mdpi.com/1424-8220/22/12/4647/htm
- 38. Selvi E, Adimoolam M, Karthi G, Thinakaran K, Balamurugan NM, Kannadasan R, et al. Suspicious Actions Detection System Using Enhanced CNN and Surveillance Video. Electronics 2022, Vol 11, Page 4210. 2022 Dec 16 [2024 Oct 17];11(24):4210. Available from: https://www.mdpi.com/2079-9292/11/24/4210/htm
- 39. Nandyal SASanjeevkumarNBI. Framework for Detecting Suspicious Activity in ATM Surveillance System using Convolutional Neural Network - ProQuest. 2022 [2024 Oct 17]. Available from: https://www.proquest.com/openview/035feacfaccfd39ee4d7fc6b574a411d/1?pq-origsite=gscholar&cbl=2035897
- 40. Islam M, Dukyil AS, Alyahya S, Habib S. An IoT Enable Anomaly Detection System for Smart City Surveillance. Sensors 2023, Vol 23, Page 2358. 2023 Feb 20 [2024 Oct 17];23(4):2358. Available from: https://www.mdpi.com/1424-8220/23/4/2358/htm
- 41. Sheikh RS, Madhav Patil S, Dhanvijay MR. Framework for deep learning based model for human activity recognition (HAR) using adapted PSRA6 dataset. International Journal of Advanced Technology and Engineering Exploration. 2023 [2024 Oct 17];10:2394–7454. Available from: http://dx.doi.org/10.19101/IJATEE.2021.876325
- 42. Li H, Sun X, Chen M. Appearance-motion heterogeneous networks for video anomaly detection. Multimed Tools Appl. 2024 May 1 [2024 Oct 17];83(15):44023–45. Available from: https://link.springer.com/article/10.1007/s11042-023-17382-7
- 43. Gupta AK, Sharma R, Ojha RP. Video Anomaly Detection Based on HSOE-FAST Modified Deep Neural Network. SN Comput Sci. 2024 Jun 1 [2024 Oct 17];5(5):1–11. Available from: https://link.springer.com/article/10.1007/s42979-024-02945-8
- 44. Wang T, Chen Y, Lv H, Teng J, Snoussi H, Tao F. Online detection of action start via soft computing for smart city. IEEE Trans Industr Inform. 2021 Jan 1;17(1):524–33.
- 45. Qaraqe M, Elzein A, Basaran E, Yang Y, Varghese EB, Costandi W, et al. PublicVision: A Secure Smart Surveillance System for Crowd Behavior Recognition. IEEE Access. 2024;12:26474–91.
- 46. Khan M, Saddik A El, Gueaieb W, De Masi G, Karray F. VD-Net: An Edge Vision-Based Surveillance System for Violence Detection. IEEE Access. 2024;12:43796–808.
- 47. Pitafi S, Anwar T, Widia IDM, Yimwadsana B, Pitafi S. Revolutionizing Perimeter Intrusion Detection: A Machine Learning-Driven Approach with Curated Dataset Generation for Enhanced Security. IEEE Access. 2023;11:106954–66.
- 48. Ullah W, Hussain T, Baik SW. Vision transformer attention with multi-reservoir echo state network for anomaly recognition. Inf Process Manag. 2023 May 1;60(3):103289.
- 49. Hussain A, Khan SU, Khan N, Shabaz M, Baik SW. AI-driven behavior biometrics framework for robust human activity recognition in surveillance systems. Eng Appl Artif Intell. 2024 Jan 1;127:107218.
- 50. Khan S, Khan MA, Shah JH, Shehzad F, Kim T, Cha JH. Suspicious activities recognition in video sequences using darknet-nasnet optimal deep features. Computer Systems Science and Engineering. 2023;47(2):2337–60.
- 51. Lopez DJD, Lien CC. Two-stage complex action recognition framework for real-time surveillance automatic violence detection. J Ambient Intell Humaniz Comput. 2023 Dec 1 [2024 Oct 17];14(12):15983–96. Available from: https://link.springer.com/article/10.1007/s12652-023-04679-6
- 52. Magdy M, Fakhr MW, Maghraby FA. Violence 4D: Violence detection in surveillance using 4D convolutional neural networks. IET Computer Vision. 2023 Apr 1 [2024 Oct 17];17(3):282–94. Available from: https://onlinelibrary.wiley.com/doi/full/10.1049/cvi2.12162
- 53. Muriithi HM, Lukandu Ateya I, Wanyembi G. Stand-off concealed firearm detection using motion tracking and convolutional neural networks. IAES International Journal of Artificial Intelligence. 2024 Sep 1 [2024 Oct 17];13(3):2666–73. Available from: https://ijai.iaescore.com/index.php/IJAI/article/view/23242
- 54. Khater S, Hadhoud M, Fayek MB. A novel human activity recognition architecture: using residual inception ConvLSTM layer. Journal of Engineering and Applied Science. 2022 Dec 1 [2024 Oct 17];69(1):1–16. Available from: https://link.springer.com/articles/10.1186/s44147-022-00098-0
- 55. Khakurel U, Rawat DB. Real-time physical threat detection on edge data using online learning. IEEE Consumer Electronics Magazine. 2024 Jan 1;13(1):72–8.
- 56. Affonso GA, De Menezes ALL, Nunes RB, Almonfrey D. Using artificial intelligence for anomaly detection using security cameras. International Conference on Electrical, Computer, Communications and Mechatronics Engineering, ICECCME 2021. 2021 Oct 7.
- 57. Danesh Pazho A, Neff C, Noghre GA, Ardabili BR, Yao S, Baharani M, et al. Ancilia: Scalable intelligent video surveillance for the artificial intelligence of things. IEEE Internet Things J. 2023 Sep 1;10(17):14940–51.
- 58. Cruz-Esquivel E, Guzman-Zavaleta ZJ. An examination on autoencoder designs for anomaly detection in video surveillance. IEEE Access. 2022;10:6208–17.
- 59. Huszar VD, Adhikarla VK, Negyesi I, Krasznay C. Toward fast and accurate violence detection for automated video surveillance applications. IEEE Access. 2023;11:18772–93.
- 60. Rendón-Segador FJ, Álvarez-García JA, Salazar-González JL, Tommasi T. CrimeNet: Neural structured learning using vision transformer for violence detection. Neural Networks. 2023 Apr 1;161:318–29.
- 61. Barragán-Huamán HY, Cataño-Añazco KE, Sevincha-Chacabana MA, Vargas-Salas O. Artificial intelligence and video surveillance in space-time crime prediction and detection: a systematic review. Revista Criminalidad. 2023 Jan 1 [2024 Oct 17];65(1):11–25. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1794-31082023000100011&lng=en&nrm=iso&tlng=es
- 62. Huertas More VM. Artificial intelligence for facial recognition in video surveillance: a systematic review of the literature. 2023.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c05e0a08-cabf-4da5-85d4-181b945d8425
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.