Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The conditions for accurately intercepting hypersonic vehicles by low-speed interceptors in the terminal guidance process are examined, considering the general form of a guidance scheme. First, based on the concept of the engagement geometry, three interception scenarios are established considering different manoeuvring configurations of the interceptors and hypersonic vehicle. Second, the boundary conditions for intercepting hypersonic vehicles (with speeds higher than those of the interceptors) are specified for the three scenarios, considering several factors: the speed, path angle, line-of-sight angle, and available overload of the interceptor; path angle and manoeuvrability of the hypersonic vehicle; and relative distance between the interceptor and vehicle. A series of simulations are performed to clarify the influence of each factor on the interception performance in the three interception scenarios. The challenges associated with accurately intercepting hypersonic vehicles by low-speed interceptors are summarised, and several recommendations for designing guidance laws are presented.
Rocznik
Tom
Strony
art. no. e143537
Opis fizyczny
Bibliogr. 38 poz., rys.
Twórcy
autor
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an 710072, China
autor
- Shanghai Aerospace Equipment Manufacturer Co., Ltd, Shanghai 200245, China
autor
- School of Astronautics, Northwestern Polytechnical University, Xi’an 710072, China
autor
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an 710072, China
autor
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an 710072, China
autor
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an 710072, China
Bibliografia
- [1] Z. Xiaoying, W. Hui, M. Haihui, and W. Huaijun, “The research of digital proving ground simulation system based on HLA,” Procedia Eng., vol. 29, pp. 3624–3630, 2012, doi: 10.1016/j.proeng.2012.01.542.
- [2] X. Yu, X. Gao, L.Wang, X.Wang, Y. Ding, C. Lu, and S. Zhang, “Cooperative multi-uav task assignment in cross-regional joint operations considering ammunition inventory,” Drones, vol. 6, no. 3, 2022, doi: 10.3390/drones6030077.
- [3] F. Li, J. Xiong, X. Chen, Z. Qu, H. Bi, J. Zhang, and Q. Xi, “Near space hypersonic vehicle target tracking adaptive non-zero mean model,” IEEE Access, vol. 10, pp. 30 445–30 456, 2021, doi: 10.1109/ACCESS.2021.3139434.
- [4] K. Zhao, J. Song, S. Ai, X. Xu, and Y. Liu, “Active fault-tolerant control for near-space hypersonic vehicles,” Aerospace, vol. 9, no. 5, p. 237, 2022, doi: 10.3390/aerospace9050237.
- [5] T. Zhang, X. Yan, W. Huang, X. Che, and Z.Wang, “Multidisciplinary design optimization of a wide speed range vehicle with waveride airframe and RBCC engine,” Energy, vol. 235, p. 121386, 2021, doi: 10.1016/j.energy.2021.121386.
- [6] T. Zhang, X. Yan, W. Huang, X. Che, Z. Wang, and E. Lu, “Design and analysis of the air-breathing aircraft with the full-body wave-ride performance,” Aerosp. Sci. Technol., vol. 119, p. 107133, 2021, doi: 10.1016/j.ast.2021.107133.
- [7] B. Xu and Z. Shi, “An overview on flight dynamics and control approaches for hypersonic vehicles,” Sci. China-Inf. Sci., vol. 58, no. 7, pp. 1–19, 2015, doi: 10.1007/s11432-014-5273-7.
- [8] Z. Zhao, W. Huang, L. Yan, and Y. Yang, “An overview of research on wide-speed range waverider configuration,” Prog. Aeosp. Sci., vol. 113, p. 100606, 2020, doi: 10.1016/j.paerosci.2020.100606.
- [9] Y. Lu, Z. Jia, X. Liu, and K. Lu, “Output feedback fault-tolerant control for hypersonic flight vehicles with non-affine actuator faults,” Acta Astronaut., vol. 193, pp. 324–337, 2022, doi: 10.1016/j.actaastro.2022.01.023.
- [10] L. He, X. Yan, and S. Tang, “Spiral-diving trajectory optimization for hypersonic vehicles by second-order cone programming,” Aerosp. Sci. Technol., vol. 95, p. 105427, 2019, doi: 10.1016/j.ast.2019.105427.
- [11] K. An, Z. Guo, W. Huang, and X. Xu, “Leap trajectory tracking control based on sliding mode theory for hypersonic gliding vehicle,” J.‘Zhejiang Univ.-SCI‘A, vol. 23, no. 3, pp. 188–207, 2022, doi: 10.1631/jzus.A2100362.
- [12] K. Hwang and H. Huh, “Research and development trends of a hypersonic glide vehicle (HGV),” J. Korean Soc. Aeronaut. Space Sci., vol. 48, no. 9, pp. 731–743, 2020, doi: 10.5139/JKSAS.2020.48.9.731.
- [13] W. Jifei, C. Jinsheng, L. Chuanzhen, D. Yanhui, and Y. Yaojie, “Aerodynamic configuration integration design of hypersonic cruise aircraft with inward-turning inlets,” Chin. J. Aeronaut., vol. 30, no. 4, pp. 1349–1362, 2017, doi: 10.1016/j.cja.2017.05.002.
- [14] B. Cunyu,W. Peng, and T. Guojian, “Integrated method of guidance, control and morphing for hypersonic morphing vehicle in glide phase,” Chin. J. Aeronaut., vol. 34, no. 5, pp. 535–553, 2021, doi: 10.1016/j.cja.2020.11.009.
- [15] X. Luo and J. Li, “Fuzzy dynamic characteristic model based attitude control of hypersonic vehicle in gliding phase,” Sci. China-Inf. Sci., vol. 54, no. 3, pp. 448–459, 2011, doi: 10.1007/s11432-011-4193-z.
- [16] S. Liu, W. Liu, F. Huang, Y. Yin, B. Yan, and T. Zhang, “Multitarget allocation strategy based on adaptive SA-PSO algorithm,” Aeronaut. J., vol. 126, no. 1300, p. 1069–1081, 2022, doi: 10.1017/aer.2021.124.
- [17] D. Jing, J. CHENG, and G. Rui, “Research on near-space hypersonic weapon defense system and the key technology,” Journal of the Academy of Equipment Command & Technology, vol. 21, no. 3, pp. 58–61, 2010, doi: 10.3783/j.issn.1673-0127.2010.03.014.
- [18] X. Wang, H. Peng, S. Zhang, B. Chen, and W. Zhong, “A symplectic pseudospectral method for nonlinear optimal control problems with inequality constraints,” ISA Trans., vol. 68, pp. 335–352, 2017, doi: 10.1016/j.isatra.2017.02.018.
- [19] W. Xinwei, L. Jie, S. Xichao, P. Haijun, Z. Xudong, and L. Chen, “A review on carrier aircraft dispatch path planning and control on deck,” Chin. J. Aeronaut., vol. 33, no. 12, pp. 3039–3057, 2020, doi: 10.1016/j.cja.2020.06.020.
- [20] T. Han, Q. Hu, and M. Xin, “Three-dimensional approach angle guidance under varying velocity and field-of-view limit without using line-of-sight rate,” IEEE Trans. Syst. Man Cybern. -Syst., pp. 1–12, 2022, doi: 10.1109/TSMC.2022.3150299.
- [21] T. Han, Q. Hu, H.-S. Shin, A. Tsourdos, and M. Xin, “Sensor-based robust incremental three-dimensional guidance law with terminal angle constraint,” J. Guid. Control Dyn., vol. 44, no. 11, pp. 2016 – 2030, 2021, doi: 10.2514/1.G006038.
- [22] B. Zhao, X. Dong, Q. Li, and Z. Ren, “A combined guidance law for intercepting hypersonic large maneuvering targets,” in 2020 Chinese Automation Congress (CAC). IEEE, 2020, pp. 1425–1430, doi: 10.1109/CAC51589.2020.9327117.
- [23] C. Liu, C. Liu, and P. Tuan, “Algorithm of impact point prediction for intercepting reentry vehicles,” Def. Sci. J., vol. 56, no. 2, p. 129, 2006, doi: 10.14429/dsj.56.1877.
- [24] Y. Si and S. Song, “Design of three-dimensional finite-time guidance law for intercepting hypersonic vehicle,” Journal of Chinese Inertial Technology, vol. 25, no. 3, pp. 405–414, 2017, doi: 10.13695/j.cnki.12-1222/o3.2017.03.023.
- [25] W. Chen, L. Shao, and H. Lei, “On-line trajectory generation of midcourse cooperative guidance for multiple interceptors,” J. Syst. Eng. Electron., vol. 33, no. 1, pp. 197–209, 2022, doi: 10.23919/JSEE.2022.000020.
- [26] S. Wan, X. Chang, Q. Li, and J. Yan, “Suboptimal midcourse guidance with terminal-angle constraint for hypersonic target interception,” Int. J. Aerosp. Eng., vol. 2019, 2019, doi: 10.1155/2019/6161032.
- [27] D. Qian, S. Tong, and C. Li, “Observer-based leader-following formation control of uncertain multiple agents by integral sliding mode,” Bull. Pol. Acad. Sci. Tech. Sci., no. 1, 2017, doi: 10.1515/bpasts-2017-0005.
- [28] T. Kuroda and F. Imado, “Advanced missile guidance system against a very high speed maneuvering target,” in Guidance, Navigation and Control Conference, 1989, p. 3445, doi: 10.2514/6.1989-3445.
- [29] T. Kuroda and F. Imado, “Advanced missile guidance system against very high speed target,” in Guidance, Navigation and Control Conference, 1988, p. 4092, doi: 10.2514/6.1988-4092.
- [30] C. Zhu, “Design of finite-time guidance law based on observer and head-pursuit theory,” Proc. Inst. Mech. Eng. Part G-J. Aerosp. Eng., vol. 235, no. 13, pp. 1791–1802, 2021, doi: 10.1177/0954410020984562.
- [31] C. Zhu and D. Mu, “Design of head-pursuit guidance law based on sliding mode control,” in IOP Conference Series: Materials Science and Engineering, vol. 563, no. 4. IOP Publishing, 2019, p. 042076, doi: 10.1088/1757-899X/563/4/042076.
- [32] C. Zhu and Z. Guo, “Design of head-pursuit guidance law based on backstepping sliding mode control,” Int. J. Aerosp. Eng., vol. 2019, 2019, doi: 10.1155/2019/8214042.
- [33] S. Liu, B. Yan, X. Zhang, W. Liu, and J. Yan, “Fractional-order sliding mode guidance law for intercepting hypersonic vehicles,” Aerospace, vol. 9, no. 2, p. 53, 2022, doi: 10.3390/aerospace9020053.
- [34] H. Liang, Z. Li, J. Wu, Y. Zheng, H. Chu, and J. Wang, “Optimal guidance laws for a hypersonic multiplayer pursuit-evasion game based on a differential game strategy,” Aerospace, vol. 9, no. 2, p. 97, 2022, doi: 10.3390/aerospace9020097.
- [35] S. Liu, B. Yan, R. Liu, P. Dai, J. Yan, and G. Xin, “Cooperative guidance law for intercepting a hypersonic target with impact angle constraint,” Aeronaut. J., vol. 126, no. 1300, pp. 1026–1044, 2022, doi: 10.1017/aer.2021.117.
- [36] S. Liu, B. Yan, T. Zhang, X. Zhang, and J. Yan, “Coverage-based cooperative guidance law for intercepting hypersonic vehicles with overload constraint,” Aerosp. Sci. Technol., vol. 126, p. 107651, 2022, doi: 10.1016/j.ast.2022.107651.
- [37] S. Liu, Y. Wang, Y. Li, B. Yan, and T. Zhang, “Cooperative guidance for active defence based on line-of-sight constraint under a low-speed ratio,” Aeronaut. J., p. 1–19, 2022, doi: 10.1017/aer.2022.62.
- [38] S. Liu, B. Yan, T. Zhang, P. Dai, R. Liu, and J. Yan, “Three-dimensional cooperative guidance law for intercepting hypersonic targets,” Aerosp. Sci. Technol., vol. 129, p. 107815, 2022, doi: 10.1016/j.ast.2022.107815.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c05c2469-e9d4-4abd-afce-dbdd75d03727