Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Modelowanie i współsymulacja małej turbiny wiatrowej z generatorem PMSG
Języki publikacji
Abstrakty
This paper presents the Co-Simulation of a Small Wind Turbine (SWT) with Permanent Magnet Synchronous Generator (PMSG). It combines Simulink, Maxwell and Simplorer software’s to show the electrical machine behaviour connected with the power electronics’ circuit. To the control of the system the Maximum Power Point Tracking (MPPT) algorithm is used. The finite element analysis (FEA) was used to design the novel electrical machine with permanent magnets. Application of FEA method for PMSG modelling guarantee exhibit a more accurate behaviour over simplified Simulink models, also during motor and power electronics faults.
W artykule przedstawiono zagadnienie symulacji małej turbiny wiatrowej z generatorem synchronicznym z magnesami trwałymi (PMSG) przy wykorzystaniu trzech niezależnych środowisk programistycznych (tzw. współsymulacja). Podczas analizy wykorzystano wspólne obliczenia z programów Simulink, Maxwell i Simplorer. Model generatora wykonany został w środowisku Maxwell (z wykorzystaniem metody elementów skończonych (FEM)), co pozwala na jego dokładną analizę zarówno w stanach statycznych jak i dynamicznych. Układ energoelektroniki zamodelowano w programie Simplorer a układy sterowania (przy wykorzystaniu metody MPPT) w środowisku Simulink. Taka analiza pozwala na uzyskanie dokładnych rezyltatów w różnych warunkach pracy – w tym podczas uszkodzenia maszyny lub elementów energoelektroniki.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
208--213
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
- Universidad Autónoma de Yucatán, Facultad de Ingeniería, Mérida, Yucatán, México
autor
- Politechnika Wrocławska, katedra maszyn, napędów i pomiarów elektrycznych ul. Smoluchowskiego 19, 50372, Wrocław
Bibliografia
- [1] J. Gieras, Permanent Magnet Motor Technology, 3rd ed., vol. 20096073. CRC Press, 2009.
- [2] D. Casadei et al., “Detection of magnet demagnetization in fivephase surface-mounted permanent magnet generators," in 2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), 2012, pp. 841-848. PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 95 NR 10/2019 213
- [3] M. P. Kazmierkowski, R. Krishnan, and F. Blaabjerg, Control in Power Electronics. Elsevier, 2002.
- [4] P. Zhou, D. Lin, W. N. Fu, B. Ionescu, and Z. J. Cendes, “A general cosimulation approach for coupled field-circuit problems," IEEE Trans. Magn., vol. 42, no. 4, pp. 1051-1054, Apr. 2006.
- [5] N. A. Orlando, M. Liserre, and A. Dell’Aquila, “Management of power excess in wind turbine system," 2009 13th Eur. Conf. Power Electron. Appl., 2009.
- [6] B. Wilamowski and D. Irwin, The industrial electronics hanbook, 2nd ed. CRC press, 2011.
- [7] Wenxiang Zhao, Ming Cheng, Xiaoyong Zhu, Wei Hua, and Xiangxin Kong, “Analysis of Fault-Tolerant Performance of a Doubly Salient Permanent-Magnet Motor Drive Using Transient Cosimulation Method," IEEE Trans. Ind. Electron., vol. 55, no. 4, pp. 1739-1748, Apr. 2008.
- [8] J. Zhao, X. Gao, B. Li, X. Liu, and X. Guan, “Open-Phase Fault Tolerance Techniques of Five-Phase Dual-Rotor Permanent Magnet Synchronous Motor," Energies, vol. 8, no. 11, pp. 12810-12838, Nov. 2015.
- [9] Y. Cetinceviz, D. Uygun, and H. Demirel, “Multi-criterion design and 2D cosimulation model of 4 kW PM synchronous generator for standalone run-of-the-river stations," in 2015 International Conference on Renewable Energy Research and Applications (ICRERA), 2015, vol. 5, pp. 1470-1476.
- [10] M. Fitouri, Y. Bensalem, and M. N. Abdelkrim, “Analysis and co-simulation of permanent magnet sychronous motor with short-circuit fault by finite element method," 13th Int. Multi- Conference Syst. Signals Devices, SSD 2016, pp. 472-477, 2016.
- [11] M. Fitouri, Y. Bensalem, and M. N. Abdelkrim, “Modeling and detection of the short-circuit fault in PMSM using Finite Element Analysis," IFAC-PapersOnLine, vol. 49, no. 12, pp. 1418-1423, 2016.
- [12] Z. Peng, L. Chai, and Y. Sheng, “Co-simulation modeling and fault diagnosis of closed-loop squirrel-cage motor systems," in 2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA), 2017, pp. 718-722.
- [13] K.-C. Kim, “Analysis on Core Loss of Brushless DC Motor Considering Pulse Width Modulation of Inverter," J Electr Eng Technol, vol. 9, no. 6, pp. 1914-1920, 2014.
- [14] P. Makolo, “Wind Generator Co-Simulation with Fault Case Analysis Master of Science Thesis," Chalmers University of Technology, Göteborg, 2013.
- [15] C. Wang, X. Liu, and Z. Chen, “Incipient stator insulation fault detection of permanent magnet synchronous wind generators based on hilbert-huang transformation," IEEE Trans. Magn., vol. 50, no. 11, 2014.
- [16] MathWorks, “SimPower Systems PMSG Model," Permanent Magnet Synchronous Machine, 2018. [Online]. Available: https://www.mathworks.com/help/physmod/sps/powersys/ref/pe rmanentmagnetsynchronousmachine.html. [Accessed: 30-Nov- 2018].
- [17] D. Rekioua, Wind Power Electric Systems, 1st ed. London: Springer London, 2014.
- [18] S. Heier, Grid Integration of Wind Energy, 3rd ed. Chichester, UK: John Wiley & Sons, Ltd, 2014.
- [19] D. Wood, Small Wind Turbines, 1st ed. London: Springer London, 2011.
- [20] P. D. Clausen and D. H. Wood, “Recent Advances in Small Wind Turbine Technology," Wind Eng., vol. 24, no. 3, pp. 189- 201, May 2000.
- [21] E. Hau, Windkraftanlagen: Springer, 2000.
- [22] M. Heydari and K. Smedley, “Comparison of maximum power point tracking methods for medium to high power wind energy systems," in 2015 20th Conference on Electrical Power Distribution Networks Conference (EPDC), 2015, no. April, pp. 184-189.
- [23] C. Indukta, “Sh 90L4," Sh90-L4 Electrical parameters, 2019. [Online]. Available: https://www.cantonigroup.com/celma/en/page/offer/details/1/14 6/Sh90L-4. [Accessed: 11-Mar-2019].
- [24] C. M. Apostoaia and M. Cernat, “Fault detection in synchronous motor drives, a co-simulation approach," Jt. Int. Conf. - ACEMP 2015 Aegean Conf. Electr. Mach. Power Electron. OPTIM 2015 Optim. Electr. Electron. Equip. ELECTROMOTION 2015 Int. Symp. Adv. Electromechanical Moti, pp. 617-622, 2016.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c05b8cd4-1e7c-4a2a-8181-a50619b72734