PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical properties of modern wheeled mobile robots

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper discusses mechanical properties of modern wheeled mobile robots including aspects of kinematics and dynamics. Relevant features of these robots and of used types of wheels are considered. Robots are categorized into six groups according to kinematic structures, which can be obtained using various types of wheels. For each group mechanical properties, which characterize the robots are discussed. Various variants of the robots within particular groups are described and some examples of existing solutions are given. Individual variants of the robots are compared and assessed taking into account the possessed features.
Twórcy
  • ŁUKASIEWICZ Research Network – Industrial Research Institute for Automation and Measurements PIAP, Warsaw, 02-486, POLAND
  • ŁUKASIEWICZ Research Network – Industrial Research Institute for Automation and Measurements PIAP, Warsaw, 02-486, POLAND
Bibliografia
  • [1] J. Borenstein, H. R. Everett, and L. Feng. “”Where am I?” Sensors and Methods for Mobile Robot Positioning”. Technical report, The University of Michigan, 1996.
  • [2] P. Corke, Robotics, Vision and Control: Fundamental Algorithms In MATLAB®, Springer Tracts in Advanced Robotics, Springer International Publishing, 2017.
  • [3] P. Dąbek and M. Trojnacki, “Requirements for Tire Models of the Lightweight Wheeled Mobile Robots”. In: J. Awrejcewicz, K. J. Kaliński, R. Szewczyk, and M. Kaliczyńska, eds., Mechatronics: Ideas, Challenges, Solutions and Applications, 2016, 33–51DOI: 10.1007/978-3-319-26886-6_3.
  • [4] Z. Hendzel, “An adaptive critic neural network for motion control of a wheeled mobile robot”, Nonlinear Dynamics, vol. 50, no. 4, 2007, 849––855 DOI: 10.1007/s11071-007-9234-1.
  • [5] Z. Hendzel and M. Trojnacki, “Neural Network Control of a Four-Wheeled Mobile Robot Subject to Wheel Slip”. In: J. Awrejcewicz, R. Szewczyk, M. Trojnacki, and M. Kaliczyńska, eds., Mechatronics – Ideas for Industrial Application, 2015, 187–201 DOI: 10.1007/978-3-319-10990-9_19.
  • [6] J. Kędzierski and M. Janiak, “Budowa robota społecznego FLASH (Construction of FLASH social robot)”. In: K. Tchon and C. Zielinski, eds., Prace Naukowe Politechniki Warszawskiej. Elektronika, vol. 182, 2012, 681–694 (In Polish).
  • [7] K. Kozlowski and D. Pazderski, “Practical Stabilization of a Skid-steering Mobile Robot – A Kinematic-based Approach”. In: 2006 IEEE International Conference on Mechatronics, 2006, 519–524 DOI: 10.1109/ICMECH.2006.252581.
  • [8] M. Lauria, F. Michaud, M. Legault, D. Letourneau, P. Retornaz, I. Nadeau, P. Lepage, Y. Morin, F. Gagnon, P. Giguere, J. Fremy, and L. Clavien, “Elastic locomotion of a four steered mobile robot”. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008, 2721–2722 DOI: 10.1109/IROS.2008.4650759.
  • [9] P. Sandin, Robot Mechanisms and Mechanical Devices Illustrated, McGraw-Hill/TAB Electronics: New York, 2003.
  • [10] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza, Introduction to autonomous mobile robots, MIT Press: Cambridge, 2011.
  • [11] K. Tchoń, K. Zadarnowska, Ł. Juszkiewicz, and K. Arent, “Modeling and control of a skid-steering mobile platform with coupled side wheels”, Bulletin of the Polish Academy of Sciences. Technical Sciences, vol. 63, no. 3, 2015 DOI: 10.1515/bpasts-2015-0092.
  • [12] M. Trojnacki, “Analysis of influence of drive system configurations of a four wheeled robot on its mobility”, Journal of Automation, Mobile Robotics and Intelligent Systems, vol. 6, no. 4, 2012, 65–70.
  • [13] M. Trojnacki, “Modelling the motion of the mobile hybrid robot”, International Journal of Applied Mechanics and Engineering, vol. 15, no. 3, 2010, 885–893.
  • [14] M. Trojnacki and P. Dąbek, “Studies of dynamics of a lightweight wheeled mobile robot during longitudinal motion on soft ground”, Mechanics Research Communications, vol. 82, 2017, 36–42 DOI: 10.1016/j.mechrescom.2016.11.001.
  • [15] M. Trojnacki, P. Dąbek, J. Kacprzyk, and Z. Hendzel, “Comparative Analysis of Posture Controllers for Tracking Control of a Four-Wheeled Skid-Steered Mobile Robot – Part 1. Theoretical Considerations”. In: R. Jabłoński and T. Brezina, eds., Advanced Mechatronics Solutions, 2016, 583–604 DOI: 10.1007/978-3-319-23923-1_85.
  • [16] “Robots in agriculture”. c2015, Into Robotics, www.intorobotics.com/35-robots-in-agriculture/. Updated on: 2018-01-14, accessed on: 2019-10-02.
  • [17] “A robot to help improve agriculture and wine production”. c2015, ScienceDaily, www.sciencedaily.com/releases/2015/01/150128113713.htm. Accessed on: 2019-10-02.
  • [18] “American Robot Company Homepage”, c2015, American Robot Company, www.ambot.com. Accessed on: 2019-10-02.
  • [19] “Argentine greenhouse robot brings automation to the masses”. c2012, CBS Interactive, www.zdnet.com/article/argentine-greenhouserobot-brings-automation-to-the-masses/. Accessed on: 2019-10-02.
  • [20] “The argo project”. Bialystok University of Technology, http://argo.pb.edu.pl/en/. Accessed on:2019-10-02.
  • [21] “Home | Curiosity – NASA’s Mars Exploration Program”. National Aeronautics and Space Ad -
  • ministration, https://mars.nasa.gov/msl/. Accessed on: 2019-10-02.
  • [22] “ESA – Robotic Exploration of Mars”. c2000-2019, European Space Agency, https://exploration.esa.int/web/mars/. Accessed on: 2019-10-02.
  • [23] “Mobile robots for healthcare – Pharmacy, Laboratory, Nutrition and EVS”. c2018, Aethon,https://aethon.com/mobile-robots-for-healthcare/. Accessed on: 2019-10-02.
  • [24] “Frontpage | Mobile Industrial Robots”. c2019-2020, Mobile Industrial Robots A/S, www.mobile-industrial-robots.com. Accessed on: 2019-10-02.
  • [25] “AGVS | Robotnik”. Robotnik Automation S.L.L.,www.robotnik.eu/mobile-robots/agvs/. Accessed on: 2019-10-02.
  • [26] “Counter terrorism robots – special vehicles, equipment and tools by PIAP”. c2015, ŁUKASIEWICZ – Instytut PIAP, www.antiterrorism.eu. Accessed on: 2019-10-02.
  • [27] “Neobotix: Homepage”. Neobotix GmbH, www.neobotix-robots.com. Accessed on: 2019-10-02.
  • [28] “NEXUS Robot”. c2012, Nexus Automation Limited, www.nexusrobot.com. Accessed on: 2019-10-02.
  • [29] “Pioneer 3-DX”. Generation Robots, www.generationrobots.com/ media/Pioneer3DX-P3DX-RevA.pdf. Accessed on: 2019-10-02.
  • [30] “Recon Scout IR”. c2018, ReconRobotics, Inc.,https://reconrobotics.com. Accessed on: 2019-10-02.
  • [31] “Tango E5 Series II | Robotic Mower | John Deere UK & IE”. c2019, Deere & Company, www.deere.co.uk/en/mowers/robotic-mower/tango-e5-series-ii/. Accessed on: 2019-10-02.
  • [32] “Special Off-road Vehicles”. Jean-Marc Maclou,www.unusuallocomotion.com. Accessed on:2019-10-02.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c05802ce-a9d8-455a-8f98-16a3fe869f1e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.