PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Self-healing epoxy/PDMS/graphene oxide nanocomposites for anti-corrosive applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
The International Chemical Engineering Conference 2021 (ICHEEC): 100 Glorious Years of Chemical Engineering and Technology, September 16–19, 2021
Języki publikacji
EN
Abstrakty
EN
This study discusses the synthesis, characterization and development of self-healing nanocomposite of amino-terminated PDMS (Polydimethylsiloxane), Epoxy (EPON828 ̧ Diethylenetriamine (DETA)), and Graphene Oxide (GO). GO was prepared using a modified Hummer’s method and was incorporated into the PDMS-Epoxy composite in various ratios (0.1 wt.%, 0.3 wt.%, and 0.5 wt.%) using toluene as the dispersing medium. Fourier Transform Infrared Spectroscopy was used for confirming the presence of the designed/prepared structures, and thermo-mechanical analysis was performed to test the change in glass transition temperature and initiation temperature of self-healing process. The composite resins were coated on mild steel substrates by curing freshly prepared resins over the substrates at elevated temperatures. The corrosion behavior of mild steel in 3.5 wt.% NaCl solution before and after the coatings was studied using Tafel Electrochemical Polarization test. The self-healing properties of the materials were also studied by applying cuts on the material and letting them heal under elevated temperatures, and the results showed that the prepared coating demonstrated an effective corrosion resistance for mild steel for various marine applications
Rocznik
Strony
137–--145
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
  • University of Petroleum & Energy Studies (UPES), School of Engineering, Energy Acres, Bidholi, Dehradun, 248007, India
  • Georgia Institute of Technology, Atlanta, GA, 30332, USA
  • University of Petroleum & Energy Studies (UPES), School of Engineering, Energy Acres, Bidholi, Dehradun, 248007, India
  • Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen AG 9747, The Netherlands
  • Department of Mechanical Engineering, University Institute of Engineering, Chandigarh University, Mohali, India
  • University of Petroleum & Energy Studies (UPES), School of Engineering, Energy Acres, Bidholi, Dehradun, 248007, India
Bibliografia
  • 1. Alam S.N., Sharma N., Kumar N., 2017. Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO)*. Graphene, 6, 1–18. DOI: 10.4236/graphene.2017.61001.
  • 2. Ammar Sh., Ramesh K., Vengadaesvaran B., Ramesh S., Arof A.K., 2016. Amelioration of anticorrosion and hydrophobic properties of epoxy/PDMS composite coatings containing nano ZnO particles. Prog. Org. Coat., 92, 54–65. DOI: 10.1016/j.porgcoat.2015.12.007.
  • 3. Aneja K.S., Böhm H.L.M., Khanna A.S., Böhm S., 2017. Functionalised graphene as a barrier against corrosion. FlatChem, 1, 11–19. DOI: 10.1016/j.flatc.2016.08.003.
  • 4. Bekas D.G., Tsirka K., Baltzis D., PaipetisA.S., 2016. Self-healing materials: A review of advances in materials, evaluation, characterization and monitoring techniques. Composites, Part B, 87, 92–119. DOI: 10.1016/j.compositesb.2015.09.057.
  • 5. Bowman E., Jacobson G., Koch G., Varney J., Thopson N., Moghissi O., Gould M., Payer J., 2016. International measures of prevention, application, and economics of corrosion technologies study. NACE International Report, NACE International, A-19.
  • 6. de la Fuente D., Díaz I., Simancas J., Chico B., Morcillo M., 2011. Long-term atmospheric corrosion of mild steel. Corros. Sci., 53, 604–17. DOI: 10.1016/j.corsci.2010.10.007.
  • 7. Groza A., Surmeian A., 2015. Characterization of the oxides present in a polydimethylsiloxane layer obtained by polymerisation of its liquid precursor in corona discharge. J. Nanomater., 2015, 204296. DOI: 10.1155/2015/ 204296.
  • 8. Guadagno L., Vertuccio L., Naddeo C., Calabrese E., Barra G., Raimondo M., Sorrentino A., Binder W.H., Michael P., Rana S., 2018. Development of aeronautical epoxy nanocomposites having an integrated selfhealing ability.”MATEC Web Conf., 233, 00021. DOI: 10.1051/matecconf/201823300021.
  • 9. Johra F.T., Jung W.-G., 2015. Hydrothermally reduced graphene oxide as a supercapacitor. Appl. Surf. Sci., 357, 1911–14. DOI: 10.1016/j.apsusc.2015.09.128.
  • 10. Kargarfard N., Diedrich N., Rupp H., Döhler D., Binder H.W., 2018. Improving kinetics of ‘click-crosslinking’ for self-healing nanocomposites by graphene-supported Cu-nanoparticles.” Polymers, 10, 17. DOI: 10.3390/polym10010017.
  • 11. Keddie J.L., Jones R.A.L., Cory R.A., 1994. Size-dependent depression of the glass transition temperature in polymer films. Europhys. Lett., 27, 59–64. DOI: 10.1209/0295-5075/27/1/011.
  • 12. Kirkland N.T., Schiller T., Medhekar N., Birbilis N., 2012. Exploring graphene as a corrosion protection barrier. Corros. Sci., 56, 1–4. DOI: 10.1016/j.corsci.2011.12.003.
  • 13. Krishnakumar B., Prasanna Sanka R.V.S., Binder W.H., Parthasarthy V., Rana S., Karak N., 2020. Vitrimers: Associative dynamic covalent adaptive networks in thermoset polymers. Chem. Eng. J., 385, 123820. DOI: 10.1016/j.cej.2019.123820.
  • 14. Liao K.-H., Aoyama S., Abdala A.A., Macosko C., 2014. Does graphene change 𝑇g of nanocomposites? Macromolecules, 47, 8311–19. DOI: 10.1021/ma501799z.
  • 15. Madhusudhana A.M., Mohana K.N.S., Hegde M.B., Nayak S.R., Rajitha K., Swamy N.K., 2020. Functionalized graphene oxide-epoxy phenolic novolac nanocomposite: an efficient anticorrosion coating on mild steel in saline medium. Adv. Compos. Hybrid Mater., 3, 141–55. DOI: 10.1007/s42114-020-00142-8.
  • 16. Punith Kumar M.K., Srivastava C., 2013. Morphological and electrochemical characterization of electrodeposited Zn–Ag nanoparticle composite coatings. Mater. Charact., 85, 82–91. DOI: 10.1016/j.matchar.2013.08.017.
  • 17. Raghupathy Y., Kamboj A., Rekha M.Y., Narasimha Rao N.P., Srivastava C., 2017. Copper-graphene oxide composite coatings for corrosion protection of mild steel in 3.5% NaCl. Thin Solid Films, 636, 107–15. DOI: 10.1016/j.tsf.2017.05.042.
  • 18. Song M.M., Wang Y.-M., Liang X.-Y., Zhang X.-Q., Zhang S., Li B.-J., 2019. Functional materials with self-healing properties: a review. Soft Matter, 15, 6615–25. DOI: 10.1039/c9sm00948e.
  • 19. Srinivas G., Burress J.W., Ford J., Yildirim T., 2011. Porous graphene oxide frameworks: Synthesis and gas sorption properties. J. Mater. Chem., 21, 11323– 11329. DOI: 10.1039/C1JM11699A.
  • 20. Zarras P., Stenger-Smith J.D., 2014. 1 – Corrosion processes and strategies for prevention: an introduction, In: Makhlouf A.S.H. (Ed.), Handbook of Smart Coatings for Materials Protection, 3–28. Woodhead Publishing. DOI: 10.1533/9780857096883.1.3.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c0538213-2996-44f0-9f94-2040de556335
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.