PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhanced adsorption of Direct Orange 26 dye in aqueous solutions by modified halloysite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The usefulness of untreated (H-NM) as well as modified by sodium benzoate (H-SB) and sulfuric acid (H-SA1 and H-SA2) halloysites as low-cost adsorbent for the removal of Direct Orange 26 azo dye from aqueous solutions was investigated. The kinetic data were evaluated in terms of the pseudo-first order and pseudo-second order kinetic models, while the equilibrium adsorption data were analyzed by the Freundlich and Langmuir isotherm equations. The data follows the pseudo-second order kinetic and Langmuir adsorption models. The DO26 adsorption capacities were 64.93, 74.07, 303.0, and 384.4 μmol/g for the H-NM, H-SB, H-SA1, and H-SA2, respectively. Adsorption of the dye was strongly pH dependent; no effect of ionic strength was observed. The study revealed that halloysites, especially acid-activated halloysites, could be used as an effective and low-cost adsorbents.
Słowa kluczowe
Rocznik
Strony
693--701
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • Institute of Chemistry, Military University of Technology, 00-908 Warsaw, Poland
  • Institute of Chemistry, Military University of Technology, 00-908 Warsaw, Poland
  • Industrial Chemistry Research Institute, 01-793 Warsaw, Poland
  • Industrial Chemistry Research Institute, 01-793 Warsaw, Poland
Bibliografia
  • AIDONG, Z.Y.T., HUAMING, Y., JING, O., 2016. Applications and interfaces of halloysite nanocomposites. Appl. Clay Sci., 119, 8-17.
  • ANASTOPOULOS, I., MITTAL, A., USMAN, M., MITTAL, J., YU, G., NÚÑEZ-DELGADO, A., KORNAROS, M., 2018. A review on halloysite-based adsorbents to remove pollutants in water and wastewater. J. Mol. Liq., 269, 855-868.
  • BELKASSA, K., BESSAHA, F., MAROUF-KHELIFA, K., BATONNEAU-GENERB, I., COMPAROT, J., KHELIFA, A., 2013. Physicochemical and adsorptive properties of a heat-treated and acid-leached Algerian halloysite. Colloids and Surfaces A: Physicochem. Eng. Aspects, 421, 26-33.
  • BESSAHA, F., MAROUF-KHELIFA, K., BATONNEAU-GENER, I., KHELIFA, A., 2016. Characterization and application of heat-treated and acid-leached halloysites in the removal of malachite green: adsorption, desorption, and regeneration studies. Desalin. Water Treat., 57(31), 14609-14621.
  • DRUMOND CHEQUER, F.M., de OLIVEIRA, G.A.R., ANASTACIO FERRAZ, E.R., CARVALHO, J., BOLDRIN ZANONI, M.V., de OLIVEIR, D.P., 2013. Textile dyes: dyeing process and environmental impact. In: Eco-Friendly textile dyeing and finishing, InTech, Rijeka, Croatia.
  • DUARTE, H.A., LOURENCO, M.P., HEINE, T., GUIMARĂES, L., 2012. Clay mineral nanotubes: stability, structure and properties. In: Stoichiometry and materials science – when numbers matter. InTech, Rijeka, Croatia.
  • FREUNDLICH, H.M.F., 1906. Über die adsorption in lösungen. Z. Phys. Chem., 57, 385-470.
  • Garcia-Garcia, D., Ferri, J.M., Ripoll, L., Hidalgo, M., Lopez-Martinez, J., Balart, R., 2017. Characterization of selectively etched halloysite nanotubes by acid treatment. Appl. Surf. Sci., 422, 616-625.
  • HO, Y.S., McKAY, G., 1999. Pseudo-second-order model for sorption processes. Process Biochem., 34, 451-465.
  • IZADYAR, S., RAHIMI, M., 2007. Use of beech wood sawdust for adsorption of textile dyes. Pakistan J. Biol Sci., 10(2), 287-293.
  • JIANG, W.T., CHANG, P.H., TSAI, Y., LI, Z., 2016. Halloysite nanotubes as a carrier for the uptake of selected pharmaceuticals. Microporous Mesoporous Mater., 220, 298-307.
  • KIANI, G., DOSTALI, M., ROSTAMI, A., KHATAEE, A.R., 2011. Adsorption studies on the removal of Malachite Green from aqueous solutions onto halloysite nanotubes. Appl. Clay Sci., 54, 34-39.
  • KOŁODZIEJCZAK-RADZIMSKA, A., JESIONOWSKI, T., 2019. Characterization of amino-, epoxy- and carbonylfunctionalized halloysite and its application in the immobilization of aminoacylase from Aspergillus melleus. Physicochem. Probl. Miner. Process., 55(1), 128-139.
  • KONICKI, W., HEŁMINIAK, A., ARABCZYK, W., MIJOWSKA, E., 2017. Removal of anionic dyes using magnetic Fe@graphite core-shell nanocomposite as an adsorbent from aqueous solutions. J. Colloid Interf. Sci., 497, 155-164.
  • KUŚMIEREK, K., SZALA, M., ŚWIĄTKOWSKI, A., 2016. Adsorption of 2,4-dichlorophenol and 2,4-dichlorophenoxyacetic acid from aqueous solution on carbonaceous materials obtained by combustion synthesis. J. Taiwan Inst. Chem. Eng., 63, 371-378.
  • LAGERGREN, S., 1898. Theorie der sogenannten adsorption geloester stoffe. Vetenskapsakad. Handl., 24, 1-39.
  • LANGMUIR, I., 1916. The constitution and fundamental properties of solids and liquids. J. Am. Chem. Soc., 38, 2221-2295.
  • LIU, R., ZHANG, B., MEI, D., ZHANG, H., LIU, J., 2011. Adsorption of methyl violet from aqueous solution by halloysite nanotubes. Desalination, 268, 111-116.
  • LORENC-GRABOWSKA, E., DIEZ, M.A., GRYGLEWICZ, G., 2016. Influence of pore size distribution on the adsorption of phenol on PET-based activated carbons. J. Colloid Interf. Sci., 469, 205-212.
  • LUO, P., ZHAO, Y., ZHANG, B., LIU, J., YANG, Y., LIU, J., 2010. Study on the adsorption of Neutral Red from aqueous solution onto halloysite nanotubes. Water Res., 44, 1489-1497.
  • MASSARO, M., LAZZARA, G., MILIOTO, S., NOTOA, R., RIELA, S., 2017. Covalently modified halloysite clay nanotubes: synthesis, properties, biological and medical applications. J. Mater. Chem. B, 5, 2867-2882.
  • MATUSIK, J., 2016. Halloysite for adsorption and pollution remediation. In: Nanosized tubular clay minerals – halloysite and imogolite, 606-627, Elsevier, Amsterdam, The Netherlands.
  • RAWTANI, D., AGRAWAL, Y.K., 2012. Multifarious applications of halloysite nanotubes: a review. Rev. Adv. Mater. Sci., 30, 282-295.
  • SAFA, Y., BHATTI, H.N., BHATTI, I.A., ASGHER, M., 2011. Removal of Direct Red-31 and Direct Orange-26 by low cost rice husk: influence of immobilisation and pretreatments. Can. J. Chem. Eng. 89, 1554-1565.
  • SAFA, Y., BHATTI, H.N., 2011. Kinetic and thermodynamic modeling for the removal of Direct Red-31 and Direct Orange-26 dyes from aqueous solutions by rice husk. Desalination, 272, 313-322.
  • SAHNOUN, S., BOUTAHALA, M., ZAGHOUANE-BOUDIAF, H., ZERROUAL, L., 2016. Trichlorophenol removal from aqueous solutions by modified halloysite: kinetic and equilibrium studies. Desalin. Water Treat., DOI: 57(34),15941-15951
  • SAKLAR, S., YORUKOGLU, A., 2015. Effects of acid leaching on halloyste, Physicochem. Probl. Miner. Process., 51(1), 83-94.
  • SZCZEPANIK, B., SŁOMKIEWICZ, P., GARNUSZEK, M., CZECH, K., 2014. Adsorption of chloroanilines from aqueous solutions on the modified halloysite. Appl. Clay Sci., 101, 260-264.
  • SZCZEPANIK, B., SŁOMKIEWICZ, P., GARNUSZEK, M., ROGALA, P., BANAŚ, D., KUBALA-KUKUŚ, A., STĄBRAWA, I., 2017. Effect of temperature on halloysite acid treatment for efficient chloroaniline removal from aqueous solutions. Clay. Clay Miner., 65, 155-167.
  • TOMCZAK, E., TOSIK, P., Sorption equilibrium of azo dyes Direct Orange 26 and Reactive Blue 81 onto a cheap plant sorbent. 2014. Ecol. Chem. Eng. S, 21(3), 435-445.
  • WIERZBICKA, E., LEGOCKA, I., SKRZYPCZYŃSKA, K., ŚWIĄTKOWSKI, A., KUŚMIEREK, K., 2019. Halloysite as a carbon paste electrode modifier for the detection of phenol compounds. Int. J. Electrochem. Sci., 14, 4114-4123.
  • YU, L., WANG, H., ZHANG, Y., ZHANG, B., LIU, J., 2016. Recent advances in halloysite nanotube derived composites for water treatment. Environ. Sci.: Nano, 3, 28-44.
  • ZHANG, A.B., PAN, L., ZHANG, H.Y., LIU, S.T., YE, Y., XIA, M.S., CHEN, X.G., 2012, Effects of acid treatment on the physico-chemical and pore characteristics of halloysite. Colloids and Surfaces A: Physicochem. Eng. Aspects, 396, 182-188.
  • ZHAO, M., LIU, P., 2008. Adsorption behavior of methylene blue on halloysite nanotubes. Microporous Mesoporous Mater., 112, 419-424.
  • ZHAO, Y., ABDULLAYEV, E., VASILIEV, A., LVOV, Y., 2013. Halloysite nanotubule clay for efficient water purification. J. Colloid Interf. Sci., 406, 121-129.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c052c2da-9e76-48cc-ad63-582855e512e2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.