Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
The object of investigation was the one-strand tundish with flow control device such as gas permeable barrier (GPB). The aim of this flow control device was to activate the motion of liquid steel in the tundish longitudinal axis region. Computer simulation of the liquid steel flow and argon behaviour in isothermal turbulent motion conditions was done using the Ansys-Fluent computer program. For the validation of the hydrodynamic patterns obtained from computer simulations, a isothermal tundish glass model was used. Tundish glass model enables the recording of the visualization of fluid medium motion through the particle image velocimetry (PIV) method. Based on computer simulations, the liquid steel flow path lines in the tundish with GPB was obtained. For explain the hydrodynamic phenomena occurring in the tundish working space, the Buoyancy number has been calculated.
Wydawca
Czasopismo
Rocznik
Tom
Strony
589--596
Opis fizyczny
Bibliogr. 43 poz., rys., wzory
Twórcy
autor
- Czestochowa University of Technology, Faculty of Production Engineering and Materials Technology, Department of Metals Extraction and Recirculation, 19 Armii Krajowej Ave, 42-200 Częstochowa, Poland
Bibliografia
- [1] M. Janik, H. Dyja, J. Mater. Process. Tech. 157-158, 177-182 (2004).
- [2] H. Zhang, W. Wang, F. Ma, L. Zhou, Metall. Mater. Trans. B. 46, 2361-2373 (2015).
- [3] K. Miłkowska-Piszczek, J. Falkus, Metalurgija 53, 571-573 (2014).
- [4] R. Pyszko, M. Pŕíhoda, P. Fojtík, M. Kováč, Metalurgija 51, 149-152 (2012).
- [5] J. J. M. Peixoto, W. V. Gabriel, L. Q. Ribeiro, C. A. da Silva, I. A. da Silva, V. Seshadri, J. Mater. Process. Tech. 233, 89-99 (2016).
- [6] K. Jin, B. G. Thomas, X. Ruan, Metall. Mater. Trans. B 47, 548-565 (2016).
- [7] I. Calderon-Ramos, R. D. Morales, Metall. Mater. Trans. B 47, 1866-1881 (2016).
- [8] Y. Miki, B. G. Thomas, Metall. Mater. Trans. B 30, 639-654 (1999).
- [9] L. Zhang, S. Taniguchi, K. Cai, Metall. Mater. Trans. B 31, 253-266 (2000).
- [10] M. Warzecha, T. Merder, P. Warzecha, G. Stradomski, ISIJ Int. 53, 1983-1992 (2013).
- [11] H. Ling, L. Zhang, JOM 65, 1155-1163 (2013).
- [12] C. Chen, P. Ni, L. T. I. Jonsson, A. Tilliander, G. Cheng, P. G. Jönsson, Metall. Mater. Trans. B 47, 1916-1932 (2016).
- [13] D. Chen, X. Xie, M. Long, M. Zhang, L. Zhang, Q. Liao, Metall. Mater. Trans. B. 45, 392-398 (2014).
- [14] A. Vargas-Zamora, R. D. Morales, M. Díaz-Cruz, J. Palafox-Ramos, J. De J. Barreto-Sandoval, Metall. Mater. Trans. B. 35, 247-257 (2004).
- [15] C. Cicuttin, A. Martin, J. Mendez, M. Romero, G. Di Gresia, Proceed. 7th European Continuous Casting Conf. 1-10, Düsseldorf 2011.
- [16] D. Janssen, J. Simoes, P. Desai, Proceed. 7th European Continuous Casting Conf. 1-8, Düsseldorf 2011.
- [17] A. N. Smirnov, V. G. Efimova, A. V. Kravchenko, Steel in Transl. 43, 673-677 (2013).
- [18] R. Ehrengruber, Proceed. 8th European Continuous Casting Conf. 1080-1091, Graz 2014.
- [19] D. Chatterjee, J. Inst. Eng. India Ser. D. DOI 10.1007/s40033-015-0093-5 (in press).
- [20] R. D. Morales, A. Ramos-Banderas, R. Sanchez-Perez, AISTech Proceed. 2, 867-877, Nashville 2004.
- [21] L. Zhong, L. Li, B. Wang, M. Jiang, L. Zhu, R. Che, Steel Res. Int. 77, 103-106 (2006).
- [22] Y. Sahai, T. Emi, Tundish technology for clean steel production, 2008 World Scientific.
- [23] G. Stolte, Secondary metallurgy, 2002 Verlag Stahleisen GmbH.
- [24] M. Guy, I. de Poloni, P. Blostein, M. Devaux, Proceed. 1st European Continuous Casting Conf. 193-202, Florence 1991.
- [25] L. Zhang, S. Taniguchi, ISS Trans. 55-79 (2001).
- [26] L. Zhang, B. G. Thomas, J. Univ. Scien. and Tech. Beijing. 13, 293-300 (2006).
- [27] R. Moravec, L. Valek, J. Pys, Proceed. SteelSIM Conf. 107-114, Brno 2005.
- [28] L. Wang, H.-G. Lee, P. Hayes, ISIJ Int. 36, 7-16 (1996).
- [29] P. E. Anagbo, J. K. Brimacombe, Metall. Mater. Trans. B 21, 637-648 (1990).
- [30] A. Alexiadis, P. Gardin, J. F. Domgin, Metall. Mater. Trans. B 35, 949-956 (2004).
- [31] A. Cwudziński, Steel Res. Int. 81, 123-131 (2010).
- [32] A. Cwudziński, Canad. Metall. Quart. 49, 63-72 (2010).
- [33] A. Cwudziński, Ironmak. Steelmak. 37, 169-180 (2010).
- [34] A. Cwudziński, Arch. Metall. Mater. 56, 611-618 (2011).
- [35] A. Cwudziński, Steel Res. Int. 86, 972-983 (2015).
- [36] H. J. Odenthal, H. Pfeifer, M. Klaas, Steel Res. Int. 71, 211-219 (2000).
- [37] H. Bai H., B. G. Thomas, Metall. Mater. Trans. B. 32, 1143-1159 (2001).
- [38] T.-H. Shih, W. W. Liou, A. Shabbir, Z. Yang, J. Zhu, Comput. Fluid. 24, 227-238 (1995).
- [39] A. Vargas-Zamora, R. D. Morales, M. Diaz-Cruz, J. Palafox-Ramos, L. Garcia Demedices, Int. J. Heat Mass Transf. 46, 3029-3039 (2003).
- [40] H. J. Odenthal, R. Bolling, H. Pfeifer, Steel Res. Int. 74, 44-55 (2003).
- [41] D. Y. Sheng, C. S. Kim, J. K. Yoon, T. C. Hsiao, ISIJ Int. 38, 843-851 (1998).
- [42] R. I. L. Guthrie, M. Isac, I&SM. 27-32 (2003).
- [43] A. Cwudziński, J. Jowsa, Metall. Found. Eng. 33, 97-103 (2007).
Uwagi
EN
The research work has been financed from the Ministry of Science and Higher Education resources as IuventusPlus programme in the years 2015-2016 project no. IP2014 006973
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c04ebc32-9ef3-42e0-aaba-92ef25f3346e