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APPLICATION OF FUNDAMENTAL SOLUTIONS TO THE
STATIC ANALYSIS OF THIN PLATES SUBJECTED TO
TRANSVERSE AND IN-PLANE LOADING
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In this paper static analysis of Kirchhoff plates is considered. A transverse and in-plane
loading is taken into consideration. The Finite Strip Method is used and the suitable
fundamental solutions are applied. According to the finite strip method a continuous
structure is divided into a set of identical elements simply supported on opposite edges.
The unknowns are deflections and transverse slope variables along the nodal lines. The
finite difference formulation is applied to express the equilibrium conditions of the
discrete system. This reduces the number of degrees of freedom. The solution of a
difference equation of equilibrium yields the fundamental function of the considered
plate strip. The fundamental solution derived in this way, can be used to solve the static
problem of a finite plate in the analogous way as the boundary element method is
applied for continuous systems.
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1. INTRODUCTION

The Finite Strip Method (FSM) was created as a numerical tool to solve specific
engineering problems [8, 9]. This method is the alternative to the most popular
Finite Element Method. Application of FSM does not require high number of
degrees of freedom. The choice of the FSM to analyse structures requires finding
and applying some types of functions called fundamental functions or
fundamental solutions. A fundamental solution describes the behaviour of an
infinite structure in the sense of generalized displacements and forces caused by
a specific type of external loading.
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The Boundary Element Method (BEM) which is often used in the thin and
thick plates theory [2, 7, 11], was used to establish the critical forces. For the
initial stability problem, the modified approach to the thin plate analysis with an
assumed physical boundary condition was proposed by Guminiak and Sygulski
[5], and also Guminiak [4]. Modelling of the plate bending problem with in-
plane loading requires a modification of the governing boundary integral
equation. It is necessary to introduce a set of internal collocation points in which
the plate curvature should be found. The analysis of plates with a wide range of
arbitrary shapes by BEM was discussed by Katsikadelis [6]. The author used the
Analog Equation Method combined with BEM to establish distribution of in-
plane forces, calculate critical forces and solve static problem with known in-
plane forces. He presented the classic formulation of thin plate bending with
corner concentrated forces and equivalent shear forces.

In this paper the critical forces were derived using the boundary element
method and the procedure described by Guminiak [4, 5]. Moreover, the critical
forces were derived analytically using the formula given in [12]. The static
analysis based on the finite strip method (FSM) of an infinite plate strip with
transverse and normal loading leads to the fundamental functions for the
considered structure. A plate structure infinite in one direction, simply supported
on its opposite edges is considered. The plate strips with such boundary
conditions are commonly applied as bridge structures, as box or plate elements.

2. STATIC ANALYSIS OF A PLATE

According to the finite strip method [8] the continuous body is approximated by
the regular mesh of identical finite strips of arbitrary width b and length L (see
Fig. 1).
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Fig. 1. An infinite plate strip discretization
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The unknowns are deflections and transverse slope amplitudes along the
nodal lines. Assuming a simply supported, four-degree-of-freedom finite strip
for discretization (Fig. 2),

Fig. 2. A finite plate strip

the field of displacements for an arbitrary strip / is expressed in the combined
form of harmonic series expansion:

W (5.)= XN gl sin (1)
n=1

where: ¢ =[w[,n b, W, ¢ M]T is the vector of displacement amplitudes for n—th

harmonic, N=[N, N, N, N, is the shape functions vector consisting of the well-
known Hermite polynomials:

3xr 2x° 2x? &P
N1=1—b—2+b—3, N2=x—7+b—2,
(2)
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For another boundary conditions of a finite strip one may use more complex
trigonometrical functions in equation (1), ie. for clamped edges

w(x,y)=Y N-q, %(1 —cosznTnyj . The total displacements at the i-th nodal line
n=1

may be derived as the sum of amplitudes obtained for an arbitrary n-th element
of the harmonic series:
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Using the displacement functions (1) in the minimization procedure for the

potential energy formula:
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+S(w)— xdy,  (4)
Oy
we obtain the set of infinite number of linear equations:
YK -q'+ Y G ¢ =P, (5)
= [=—x
where: M (w), M (w), M, (w) are appropriate bending moments, S (w) is
the axial force, q =[w,. o, w, <|>/.] and P’=[T,. m T, m/.] are the

displacement and force vectors for I-th strip, respectively, K’ is the stiffness
matrix and G’ is the geometrical matrix of the finite strip element.

2.1. The element geometrical matrix

The geometrical matrix G for the finite strip of width b (see Fig. 2) can be
derived from the expression:

bL
G'=[[B"-S-Bdy-dx, (6)
00
where:
N, G, O,
B= } S{ }}, )
va Gx}' O-yy

o; are membrane stresses (constant across the plate thickness) produced by the
in-plane forces acting at the finite strip borders. Using the equation (2) in the
equation (6) leads to the geometrical matrix for any (/-th) finite element:
72 6 -T2 6b
;S | 6b 8 —6b —2p’ )
1206 -72 —6b T2 —6b | ®
6b —2b* —6b 8

where 4 is the plate thickness.
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2.2. The element stiffness matrix

The element stiffness matrix for a four-degree-of-freedom /-th strip can be
derived from:

b L
K'=[[B"-D-Bdy-dx, 9)
00
where:
D, D, 0
D=|D D, .
0 0 D, / 2
The above mentioned flexural stiffness parameters for an orthotropic plate are:
EN En
a-vh Y 120-v))’
(10)
D = Vlf '(Dx +Dy) D = (1_V1§)'(Dx +Dy)'
1 D xy 2
In the case of an isotropic plate these coefficients (10) have simpler form:
Enh* 2
D=D =D =————,D/=v,-D,D_ =\l-v,) D,
=D,y D D Do =) (an
where: E'is the Young's modulus and v is the Poisson's ratio.
After some operations the stiffness matrix takes the form:
K,=a K +a, K, +a; - K; +a,-K, (12)
where K; are number matrices:
156 22 54 —13b] 6 3 -6 3b]
26 407 13 -3b° 3b 26° -3b b’
K = KZ = 13
Vlsa 13 156 —220 6 -3 6 -3 13
|-13b -3b* -22b 4b° | 136 b* -3b 2b° |
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36 18» 36 3b | 36 3 -36 3b |
18 4b* -3b —b* 3b  4b* -3b -b*

O a6 w36 1s| T |ise 3 36 3| (3D
|3 b’ -18b  4b® | | 36 —b> -3b 4b° |

a,; are coefficients depending on physical and geometrical parameters of the
considered structure:

4 2 2
LbD LD LD a. LD

al = a” - H aZ 3y H a3 = a" 1 H a4 = i B s an = T . (14)
840 b 306 306 L

2.3. The equilibrium equations

The equilibrium equations are derived applying the finite element methodology.
Having derived the element geometrical (8) and stiffness (12) matrices the
equilibrium equations for the n-th harmonic element, after assembling two
adjacent elements R-th and (R+1)-th (Fig. 3) are of the form:

Tr r—1 +Trr+1 _Pr
(15)
mr,r—l + mr,r+1 = mr

where T, ; and m, ; are forces derived for each element using equation (5).

Fig. 3. Forces acting at a nodal line

For a regular system the equilibrium conditions (15) can be written in the form
of difference equations equivalent to the FEM matrix formulation [9]:

{[BIAZ +B°]'Wr _Bz(E_Elf'(l’r =B, k.

B(E—E")w, +[8,4 +B,]- 0, =B, -m, (1o

where:
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. . S
BP :SIH(yP’an) s B =S1n(ym’an) s By =420, , O :W ’

B, =60a, —a, — 6y —6a, ~12a, ) ,

B, =b(13a, —3a, -3a; -3a, —6a, ), (17)

Bs =b2(—3a1 ta, —a;—a, —2ag) ,
By = 2b2(0:1 +3a, +3a; + 30, + 6ag) ,
E" is the shifting operator (see [1]):

En(fr )=fr+n’

R =R=(E+E"-2)

(18)

is the second-order difference operator
Rf=E+E -2t =f, 41021, (19)

a; are the functions of harmonic number » given by (14), P. and m, are the

r

forces and moments acting at the nodal line r (with co-ordinates y, and y,,

respectively). After elimination of the slope function ¢,, the equilibrium
conditions are transformed into one fourth-order difference equation with one
unknown w, (nodal transverse displacement amplitude for the n-th harmonic):

[BA +BA +B)| w =B, B8 +B,)- B +BB,(E-E")-m, (20)
where:

Bo = BOB4 > Bz = BOB} + BIB4 + 4B§ > B4 = 3133 +B§ (21)

For the regular infinite plate strip, equation (20) is equivalent to the set of
infinite number of equilibrium conditions derived using the finite strip
methodology (FSM). The solution of this equation enables one to determine the
state of deformation of the entire considered structure.

3. THE FUNDAMENTAL SOLUTION

Solution of the finite difference equilibrium equation (20) yields the
fundamental functions for the considered system. In order to solve the static
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problem of the structure loaded by the force £, =F£05,,=P-5,, (M, =0, 3,,
— Kronecker delta) we use the discrete Fourier transform in x direction [10]:
Flfl=f@)=2 1, &
i (22)
- 7 1 [ —ira
F @) 7= [ Fla) e da.

Applying both transforms (22) to the equilibrium equation (20) yields the
formula:

o, (23)

P} (S, cos(a)+S,)cos(ra)
w, = —I 5 -d
T3 COS (OL)+ B, cos(a)+ C,

where:
B, = (Bz —4B, )/(234) . C, = (4B4 —2B, + B, )/(434),
S, =B, /(2B,) . S, =(B,~2B;)B,/(4B,).

The solution, i.e. the nodal displacement amplitude may be expressed in the
form of the following recurrent relation:

(24)

W, =218, F )+ S, F ()] es)

where
-

1

A(r=3 A(r—4
+— 2. C(r-3)-= 277 C(r =5)+...
201 302

7

F(r)=2"-C(r+ 1)—{ ]2"3 Clr-1)+

(26)

F(r)=2"". C(r)—( JzH Cr-2)+

1

A(r=3 Ar—4)
+2[ J2r5~C(r—4)—3[ J2’7~C(r—6)+...

1 2

27

The integrals occurring in the above formula:
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kY

clo)= ’! COSZ(OL)E;Sm f;(zs)((x)-i- Cn

do (28)

can be easily solved in an analytical way. The formula (25) expresses the
deflection amplitude along the nodal line » for an arbitrary n-th element of the
harmonic series in a closed analytical form. From the equilibrium equations (16)
the following relations for the transverse slope amplitudes are obtained:

P B BB

Wy — O >

28, B, 2B,
(29)
2 —
er-%—l = %e» - er—l - g_z(wrﬂ - Wr—l)'
The functions of displacements at the nodal line » are in the form of the sums:
N
Zw smT 0(r,y)= ZG (n)-sin nLy (30)

n=1

where N is the number of harmonic elements, w, (1) and 6,(n) are amplitudes

obtained from (25) and (29), respectively.

The fundamental functions (30) for the infinite strip enable one to solve
the static problem of a rectangular plate with finite dimensions, according to the
indirect BEM.

4. NUMERICAL EXAMPLES

A problem of the initial stability of rectangular plates subjected to uniformly
distributed loading ¢ and compressive forces N, is considered. All types of
boundary conditions are introduced in the analysis.

The plate properties are as follows: Young’s modulus £= 205 GPa, Poisson’s
ratio v = 0.3. The number of finite strips chosen for discretization was 6 and 12.
Analytical solutions for the problem of initial stability of Kirchhoff plates were
evaluated basing on the procedures given by Girkmann [3], Timoshenko and
Woinowsky-Krieger [13] and Timoshenko and Gere [12].

4.1. The square simply-supported plate

The square plate, simply-supported on all edges and subjected to the uniformly
distributed transverse loading and constant loading acting in plane is considered.
The plate dimensions are / = [, = [,= 1.0 m, the plate thickness # = 0.02 m, the
uniformly distributed transverse loading p = 100 kN/m” and the constant loading
acting in-plane N, (Fig. 4).
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Fig. 4. Square, simply-supported plate subjected to the uniformly distributed loading p
and constant loading in-plane N,

The values of critical forces obtained using the analytical solution given in
[12] and applying the BEM formulation presented in [5] are shown in Table 1. In
the considered approach the plate boundary was divided into ten elements.

Table 1. The values of critical force

N Analytical BEM
[kN/m] solution solution
1 5928.993 5978.358
2 9264.052 9450.545
3 16.469.42 17102.466

The results obtained for the first critical force are presented in Table 2.
The calculations were carried out for various values of in-plane loading. The
constant loading N, was assumed to be lower than the critical force.

Table 2. Deflection and bending moment at the point A

N, w, - D/(pl*) M /(pi?)

0.0 0.004081 0.049700
025N, 0.006903 0.070470
0.50 - N, 0.012212 0.123610
075N, 0.052933 0.533570
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4.2. The square plate, simply-supported on two opposite edges with
two clamped edges

In this example the square plate, simply-supported on two opposite edges with
two clamped edges, subjected to the uniformly distributed transverse loading and
constant loading acting in plane is considered. The plate dimensions are / = /.= [,
= 1.0 m, the plate thickness # = 0.02 m, the uniformly distributed transverse
loading p = 100 kN/m*. The calculations were carried out for a few values of
constant load &, , which acts in plane (Fig. 5).

The value of the critical force for the considered plate obtained
analytically [12] and derived applying BEM procedure [5] equals N, = 10090
kN/m and N, = 11635 kN/m, respectively. The values of deflection and bending
moment at the middle point of the plate are shown in Table 3.
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Fig. 5. Square plate, simply-supported on two opposite edges with two
edges clamped, subjected to the uniformly distributed loading p
and constant in plane loading N,

Table 3. Deflection and bending moment at the point A

N, w, -D/(pl*) M /(p?)

0.0 0.002174 0.03430
025N, 0.002792 0.04477
050 - N, 0.003891 0.06335
0.75 Ny 0.006397 0.10553
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4.3. The rectangular plate, simply-supported on all edges

The rectangular plate, simply-supported on all edges subjected to the uniformly
distributed transverse loading and constant loading acting in-plane is considered
(Fig. 6).

AARAKAAN AL =

Fig. 6. Rectangular, simply-supported plate, subjected to the uniformly distributed
loading p and constant in-plane loading N,

The plate dimensions are [/ =0.5 /. = /[, = 1.0 m, the plate thickness
h=0.02 m, the uniformly distributed transverse loading p = 100 kN/m’. The
value of constant loading N, , which acts in-plane depends on the critical force
(see Tab. 4).

Table 4. Deflection and bending moment at the point A

N, w,-D/(pl*) M2 /(p?)

0.0 0.01017 0.04434
025 N, 0.01358 0.05194
050 - N, 0.01726 0.06208
0.75 - Ny 0.02340 0.07025

In this case the value of the critical force was derived applying BEM
methodology [5]. For the considered plate the critical force equals N, = 5983
kN/m. The value of deflection and bending moment at the middle point of the
plate are shown in Table 4.

4.4. The rectangular plate, simply-supported on two opposite edges
and with two free edges

The rectangular plate, simply-supported on two opposite edges with two free

edges is considered. Apart from the uniformly distributed transverse loading p =

100 kN/m? , the constant load N, acts in-plane (Fig. 7). The plate dimensions are

l[,=2.0m, [, = 1.0 m, the plate thickness is # = 0.02 m.
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Fig. 7. Rectangular plate, simply-supported on two opposite edges
and with two free edges, subjected to the uniformly distributed loading p
and constant in-plane loading N,

The results derived using the BEM procedure given in [5] yield the critical
force value N, = 403 kN/m. The fundamental functions obtained using the FSM
enable to derive the deflections and bending moments for the considered plate at
the middle point 4 (Table 5).

Table 5. Deflection and bending moment at the point A

N, wy - D/(pl*) M (p1?)

0.0 0.19830 0.46543
025 N, 028101 0,70641
0.50 - N, 0.48291 1,29549
0.75 - N, 172861 493285

As it was expected the values of deflection and bending moment at the middle
point for each example plate increase with the growth of the in-plane loading.

5. CONCLUDING REMARKS

In this paper the static analysis of thin plates with a transverse and in-plane
loading was considered. The equilibrium conditions for an infinite strip were
derived in the form of one difference equation. The solution of this equation, i.e.
the fundamental function for an infinite plate strip, was derived basing on the
finite strip method (FSM). This method is an important alternative to the most
popular Finite Element Method, because it does not require a high number of
degrees of freedom. The fundamental solution derived in this way, can be used
to solve the static problem of a finite plate. Moreover, plates simply supported
on their opposite edges and loaded in-plane are commonly applied as bridge
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structures, as box or plate elements. The numerical results demonstrate the
effectiveness and efficiency of the proposed method.
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ZASTOSOWANIE FUNKCJI FUNDAMENTALNYCH W ANALIZIE STATYCZNEJ
PLYT CINKICH OBCIAZONYCH POPRZECZNIE I W PLASZCZYZNIE

Streszczenie

W pracy przedstawiono analiz¢ statyczna ptyt cienkich, obciazonych zaréwno
poprzecznie jak i w plaszczyznie, z wykorzystaniem metody pasm skonczonych.
Zgodnie z zasadami metody pasm skonczonych, ciagly i nieograniczony uktad
aproksymowany jest nieskonczona liczba identycznych elementdéw, ktéorymi sa pasma
skonczone swobodnie podparte na przeciwleglych bokach. Niewiadomymi sa tzw.
amplitudy ugie¢ i katow obrotu na liniach weztowych, czyli na brzegach swobodnych
pasma skonczonego. Po okresleniu macierzy sztywno$ci i macierzy geometrycznej
elementu skonczonego wyprowadzone zostalo réznicowe réwnanie rownowagi, ktore
obowiazuje dla kazdej linii we¢ztowej pomigdzy elementami. Glowna zaleta tej metody
jest mozliwos¢ przedstawienia warunkow rownowagi dla catego rozwazanego uktadu w
postaci jednego réwnania rekurencyjnego. Rozwigzanie wpomnianego réwnania dla
regularnego, dyskretnego pasma plytowego nazywane jest funkcja fundamentalna.
Rozwiazanie fundamentalne otrzymane w ten sposob zostalo wykorzystane do
rozwiazania problemu statyki ptyty o skonczonych wymiarach, w sposéb analogiczny
jak metoda elementéw brzegowych w statyce uktadow ciaglych. Podstawowa korzyscia
wynikajaca ze stosowania metody elementéw brzegowych (BEM) oraz metody pasm
skonczonych (FSM) jest mniejszy naklad obliczeniowy w poréwnaniu z innymi,
podobnymi metodami.



