Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Predictive Maintenance presents an important and challenging task in Industry 4.0. It aims to prevent premature failures and reduce costs by avoiding unnecessary maintenance tasks. This involves estimating the Remaining Useful Life (RUL), which provides critical information for decision makers and planners of future maintenance activities. However, RUL prediction is not simple due to the imperfections in monitoring data, making effective Predictive Maintenance challenging. To address this issue, this article proposes an Evidential Deep Learning (EDL) based method to predict the RUL and to quantify both data uncertainties and prediction model uncertainties. An experimental analysis conducted on the C-MAPSS dataset of aero-engine degradation affirms that EDL based method outperforms alternative machine learning approaches. Moreover, the accompanying uncertainty quantification analysis demonstrates sound methodology and reliable results.
Wydawca
Rocznik
Tom
Strony
37--55
Opis fizyczny
Bibliogr. 35 poz., rys.
Twórcy
autor
- CESI-LINEACT. EA7527, Nanterre 92000, France
- CESI-LINEACT. EA7527, Arras 62000, France
autor
- CESI-LINEACT. EA7527, Arras 62000, France
Bibliografia
- [1] Hong-feng, W. (2012). Prognostics and Health Management for Complex system Based on Fusion of Model-based approach and Data-driven approach. Physics Procedia, 24, 828-831.
- [2] Aydemir, G., & Acar, B. (2020). Anomaly monitoring improves remaining useful life estimation of industrial machinery. Journal of Manufacturing Systems, 56, 463-469.
- [3] Sankararaman, S. (2015). Significance, interpretation, and quantification of uncertainty in prognostics and remaining useful life prediction. Mechanical Systems and Signal Processing, 52, 228-247.
- [4] Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.
- [5] Dempster, A. P. (1967). Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 325–339.
- [6] Shafer, G. (1976). A mathematical theory of evidence (Vol. 42). Princeton university press.
- [7] Amini, A., Schwarting, W., Soleimany, A., & Rus, D. (2020). Deep evidential regression. Advances in Neural Information Processing Systems, 33, 14927-14937.
- [8] Frederick, D. K., DeCastro, J. A., & Litt, J. S. (2007). User’s guide for the commercial modular aero-propulsion system simulation (C-MAPSS) (No. E-16205).
- [9] Saxena, A., Goebel, K., Simon, D., & Eklund, N. (2008). Damage Propagation Modeling for Aircraft Engine Run-to-Failure Simulation. In Proceedings of the International Conference on Prognostics and Health Management, 1–9.
- [10] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.
- [11] Wang, Z., Liu, N., & Guo, Y. (2021). Adaptive sliding window LSTM NN based RUL prediction for lithium-ion batteries integrating LTSA feature reconstruction. Neurocomputing, 466, 178-189.
- [12] Zhao, B., & Yuan, Q. (2021). A novel deep learning scheme for multi-condition remaining useful life prediction of rolling element bearings. Journal of Manufacturing Systems, 61, 450-460.
- [13] Liu, K., Shang, Y., Ouyang, Q., & Widanage, W. D. (2020). A data-driven approach with uncertainty quantification for predicting future capacities and remaining useful life of lithium-ion battery. IEEE Transactions on Industrial Electronics, 68(4), 3170-3180.
- [14] Gou, B., Xu, Y., & Feng, X. (2020). State-of-health estimation and remaining-useful-life prediction for lithium-ion battery using a hybrid data-driven method. IEEE Transactions on Vehicular Technology, 69(10), 10854-10867.
- [15] Zhang, Y., Xiong, R., He, H., & Pecht, M. G. (2018). Lithium-ion battery remaining useful life prediction with Box–Cox transformation and Monte Carlo simulation. IEEE Transactions on Industrial Electronics, 66(2), 1585-1597.
- [16] Sateesh Babu, G., Zhao, P., & Li, X. L. (2016). Deep convolutional neural network based regression approach for estimation of remaining useful life. In Database Systems for Advanced Applications: 21st International Conference, DASFAA 2016, Dallas, TX, USA, April 16-19, 2016, Proceedings, Part I 21 (pp. 214-228). Springer International Publishing.
- [17] Wen, L., Dong, Y., & Gao, L. (2019). A new ensemble residual convolutional neural network for remaining useful life estimation. Math. Biosci. Eng, 16(2), 862-880.
- [18] Khan, A., Sohail, A., Zahoora, U., & Qureshi, A. S. (2020). A survey of the recent architectures of deep convolutional neural networks. Artificial intelligence review, 53, 5455-5516.
- [19] Li, J., Li, X., & He, D. (2019). A directed acyclic graph network combined with CNN and LSTM for remaining useful life prediction. IEEE Access, 7, 75464-75475.
- [20] Muneer, A., Taib, S. M., Fati, S. M., & Alhus-sian, H. (2021). Deep-learning based prognosis approach for remaining useful life prediction of turbofan engine. Symmetry, 13(10), 1861.
- [21] Zhang, C., Lim, P., Qin, A. K., & Tan, K. C. (2016). Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics. IEEE transactions on neural networks and learning systems, 28(10), 2306-2318.
- [22] Gugulothu, N., Tv, V., Malhotra, P., Vig, L., Agarwal, P., & Shroff, G. (2017). Predicting remaining useful life using time series embeddings based on recurrent neural networks. arXiv preprint arXiv:1709.01073.
- [23] Soualhi, M., Nguyen, K. T., Medjaher, K., Nejjari, F., Puig, V., Blesa, J., & Marlasca, F. (2023). Dealing with prognostics uncertainties: Combination of direct and recursive remaining useful life estimations. Computers in Industry, 144, 103766.
- [24] Chang, Y., Zou, J., Fan, S., Peng, C., & Fang, H. (2022). Remaining useful life prediction of degraded system with the capability of uncertainty management. Mechanical Systems and Signal Processing, 177, 109166.
- [25] Prabhakar, S., & Cheng, C. K. (2009). Data uncertainty management in sensor networks. Encyclopedia of Database Systems.
- [26] Gal, Y., & Ghahramani, Z. (2016, June). Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In international conference on machine learning (pp. 1050-1059). PMLR.
- [27] Postels, J., Ferroni, F., Coskun, H., Navab, N., & Tombari, F. (2019). Sampling-free epistemic uncertainty estimation using approximated variance propagation. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 2931-2940).
- [28] Geifman, Y., Uziel, G., & El-Yaniv, R. (2018). Bias-reduced uncertainty estimation for deep neural classifiers. arXiv preprint arXiv:1805.08206.
- [29] Denœux, T. (2019). Logistic regression, neural networks and Dempster–Shafer theory: A new perspective. Knowledge-Based Systems, 176, 54-67.
- [30] Sensoy, M., Kaplan, L., & Kandemir, M. (2018). Evidential deep learning to quantify classification uncertainty. Advances in neural information processing systems, 31.
- [31] Lorieul, T. (2020). Uncertainty in predictions of deep learning models for fine-grained classification (Doctoral dissertation, Université Montpellier).
- [32] MacKay, D. J. (1995). Bayesian neural networks and density networks. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 354(1), 73-80.
- [33] Mendes-Moreira, J., Soares, C., Jorge, A. M., & Sousa, J. F. D. (2012). Ensemble approaches for regression: A survey. Acm computing surveys (csur), 45(1), 1-40.
- [34] Parisi, G., & Shankar, R. (1988). Statistical field theory.
- [35] Jiang, Ke, Brian Kulis, and Michael Jordan. “Small-variance asymptotics for exponential family Dirichlet process mixture models.” Advances in Neural Information Processing Systems 25 (2012).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c048d3d2-ca88-4eab-91be-71405da5008b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.