PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal shock effects on the mechanical behavior of granite exposed to dynamic loading

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Under certain extreme conditions in rock engineering works, fast change in temperature in the load-bearing rocks can happen. Known as thermal shock (TS), such process involves rapid temperature rise or drop, which causes fracturing in the rock material and thus can pose as a threat to the stability of the rock structures. To investigate the influence of thermal shock caused by fast cooling on the mechanical property of rock, laboratory tests are performed on heated granite which are cooled with different methods, with the highest cooling rate reaching 167.4 °C/min. The dynamic loading tests are performed on the heated granite specimens utilizing the split Hopkinson pressure bar (SHPB) system. The test results show that the dynamic compressive strength drops with the increase in heating level or cooling rate. This pattern is explained by the nuclear magnetic resonance (NMR) test data that the pores inside the heated granite increase both in size and quantity as heating level or cooling rate rises. Damage patterns of the tested granite specimen fragments are analyzed based on the observation with scanning electron microscope (SEM), and the mechanisms of thermal shock in granite are also discussed.
Rocznik
Strony
30--40
Opis fizyczny
Bibliogr. 48 poz., fot., rys., wykr.
Twórcy
autor
  • School of Civil Engineering, Sun Yat-sen University, Zhuhai 519082, China
  • School of Resources and Safety Engineering, Central South University, Changsha 410083, China
autor
  • School of Resources and Safety Engineering, Central South University, Changsha 410083, China
autor
  • School of Resources and Safety Engineering, Central South University, Changsha 410083, China
autor
  • School of Resources and Safety Engineering, Central South University, Changsha 410083, China
autor
  • State Key Laboratory of High Performance Complex Manufacturing, School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
autor
  • School of Civil Engineering, Sun Yat-sen University, Zhuhai 519082, China
Bibliografia
  • [1] Brotóns V, Tomás R, Ivorra S, Alarcón JC. Temperature influence on the physical and mechanical properties of a porous rock: San Julian’s calcarenite. Eng Geol. 2013;167:117–27.
  • [2] Ozguven A, Ozcelik Y. Temperature influence on the physical and mechanical properties of a porous rock: San Julian’s calcarenite. Constr Build Mater. 2013;38:813–21.
  • [3] Sirdesai NN, Mahanta B, Ranjith PG, Singh TN. Effects of thermal treatment on physico-morphological properties of Indian finegrained sandstone. Bull Eng Geol Environ. 2019;78:883–97.
  • [4] Richter D, Simmons G. Thermal expansion behavior of igneous rocks. Int J Rock Mech Min Sci Geomech Abstr. 1974;11:403–11.
  • [5] Memari A, Azar MRK. Thermo-mechanical shock fracture analysis by meshless method. Theoret Appl Fract Mech. 2019;102:171–92.
  • [6] Hall K, Thorn CE. Thermal fatigue and thermal shock in bedrock: an attempt to unravel the geomorphic processes and products. Geomorphology. 2014;206:1–13.
  • [7] Huang YH, Yang SQ, Bu YS. Effect of thermal shock on the strength and fracture behavior of pre-flawed granite specimens under uniaxial compression. Theoret Appl Fract Mech. 2020;106:1–13.
  • [8] Chen YL, Ni J, Shao W, Azzam R. Experimental study on the influence of temperature on the mechanical properties of granite under uni-axial compression and fatigue loading. Int J Rock Mech Min Sci. 2012;56:62–6.
  • [9] Shang J, Jayasinghe LB, Xiao F, Duan K, Zhao Z. Three-dimensional DEM investigation of the fracture behaviour of thermally degraded rocks with consideration of material anisotropy. Theoret Appl Fract Mech. 2019;104:1–13.
  • [10] Mahanta B, Singh TN, Ranjith PG. Influence of thermal treatment on mode I fracture toughness of certain Indian rocks. Eng Geol. 2016;210:103–14.
  • [11] Yin T, Bai L, Li X, Li X, Zhang S. Effect of thermal treatment on the mode I fracture toughness of granite under dynamic and static coupling load. Eng Fract Mech. 2018;199:143–58.
  • [12] Yavuz H. Effect of freeze–thaw and thermal shock weathering on the physical and mechanical properties of an andesite stone. Bull Eng Geol Environ. 2011;70:187–92.
  • [13] Liu S, Xu J. An experimental study on the physico-mechanical properties of two post-high-temperature rocks. Eng Geol. 2015;185:63–70.
  • [14] Peng W, Xu J, Shi L, Wang H, Liu S. Static and dynamic mechanical properties of sedimentary rock after freeze-thaw or thermal shock weathering. Eng Geol. 2016;210:148–57.
  • [15] Han G, Jing H, Su H, Liu H, Yin Q, Wu J. Effects of thermal shock due to rapid cooling on the mechanical properties of sandstone. Environ Earth Sci. 2019. https ://doi.org/10.1007/s12665-019-8151-1.
  • [16] Huang Y, Yang S, Bu Y. Effect of thermal shock on the strength and fracture behavior of pre-flawed granite specimens under uniaxial compression. Theoret Appl Fract Mech. 2020;106:102474.https ://doi.org/10.1016/j.tafme c.2020.10247 4.
  • [17] Zhao Z, Liu Z, Pu H, Li X. Effect of thermal treatment on Brazilian tensile strength of granites with different grain size distributions. Rock Mech Rock Eng. 2018;51(4):1293–303.
  • [18] Nasseri MHB, Schubnel A, Young RP. Coupled evolutions of fracture toughness and elastic wave velocities at high crack density in thermally treated Westerly granite. Int J Rock Mech Min Sci. 2007;44(4):601–16.
  • [19] Zhang W, Sun Q, Hao S, Geng J, Lv C. Experimental study on the variation of physical and mechanical properties of rock after high temperature treatment. Appl Therm Eng. 2016;98:1297–304.
  • [20] Wang P, Xu J, Liu S, Wang H. Dynamic mechanical properties and deterioration of red-sandstone subjected to repeated thermal shocks. Eng Geol. 2016;212:44–52.
  • [21] Li Q, Yin T, Li X, Zhang S. Effects of rapid cooling treatment on heated sandstone: a comparison between water and liquid nitrogen cooling. Bull Eng Geol Environ. 2020;79:313–27.
  • [22] Li X, Zhang Z, Chen W, Yin T, Li X. Mode I and Mode II granite fractures after distinct thermal shock treatments. J Mater Civ Eng. 2019;31(4):06019001. https ://doi.org/10.1061/(asce)mt.1943-5533.00026 27.
  • [23] Dionisio A. Stone decay induced by fire on historic buildings: the case of the cloister of lisbon cathedral (portugal). Geol Soc Lond Spec Publ. 2007;271(1):87–98.
  • [24] Chakrabarti B, Yates T, Lewry A. Effect of fire damage on natural stonework in buildings. Constr Build Mater. 1996;10(7):539–44.
  • [25] Penna A. Seismic assessment of existing and strengthened stonemasonry buildings: critical issues and possible strategies. Bull Earthq Eng. 2015;13(4):1051–71.
  • [26] ISRM. Suggested methods for determining water content, porosity, density, absorption and related properties and swelling and slake-durability index properties. Int J Rock Mech Min Sci.1979;16:151–6.
  • [27] Yagiz S. P-wave velocity test for assessment of geotechnical properties of some rock materials. Bull Mater Sci. 2011;34:947–53.
  • [28] Zhou Z, Li X, Liu A, Zou Y. Stress uniformity of split Hopkinson pressure bar under half-sine wave loads. Int J Rock Mech Min Sci. 2011;48:697–701.
  • [29] Gray GT. Classic split-Hopkinson pressure bar testing. Vol. 8. ASM Handbook; 2000. p. 462–476.
  • [30] Dai F, Huang S, Xia K, Tan Z. Some fundamental issues in dynamic compression and tension tests of rocks using split Hopkinson pressure bar. Rock Mech Rock Eng. 2010;43:657–66.
  • [31] Fuenkajorn K, Kenkhunthod N. Influence of loading rate on deformability and compressive strength of three Thai Sandstones. Geotech Geol Eng. 2010;28:707–15.
  • [32] Antao SM. Quartz: structural and thermodynamic analyses across the α-β transition with origin of negative thermal expansion (nte) in β quartz and calcite. Acta Crystallogr Sect B. 2016;72(2):249–62.
  • [33] Molen IVD. The shift of the α-β transition temperature of quartz associated with the thermal expansion of granite at high pressure. Tectonophysics. 1981;73(4):323–42.
  • [34] Veeman WS. Nuclear magnetic resonance, a simple introduction to the principles and applications. Geoderma. 1997;80:225–42.
  • [35] Jiang Z, Yu S, Deng H, Deng J, Zhou K. Investigation on microstructure and damage of sandstone under cyclic dynamic impact. IEEE Access. 2019;7:133145–58.
  • [36] Forster MJ. Fast repetition spin-echo method for measuring spin–spin relaxation times. J Magn Reson. 1989;84:580–4.
  • [37] Li J, Kaunda RB, Zhou K. Experimental investigations on the effects of ambient freeze-thaw cycling on dynamic properties and rock pore structure deterioration of sandstone. Cold Reg Sci Technol. 2018;154:133–41.
  • [38] Li P, Sun W, Wu B, Gao Y, Du K. Occurrence characteristics and influential factors of movable fluids in pores with different structures of Chang 63 reservoir, Huaqing oilfield, Ordos basin, China. Mar Petrol Geol. 2018;97:480–92.
  • [39] Jiang Z, Deng H, Liu T, Tian G, Tang L. Study on microstructural evolution of marble under cyclic dynamic impact based on NMR. IEEE Access. 2019;7:138043–55.
  • [40] Liu Y, Yao Y, Liu D, Zheng S, Sun G, Chang Y. Shale pore size classification: an NMR fluid typing method. Mar Petrol Geol. 2018;96:591–601.
  • [41] Dunn KJ, Bergman JD, Latorraca AG. Nuclear magnetic resonance petrophysical and logging application. Pergamon; 2002.
  • [42] Li H, Zhu J, Guo H. Methods for calculating pore radius distribution in rock from NMR T2 spectra. Chin J Magn Reson. 2008;25(2):273–80.
  • [43] Dolino G, Bachheimer JP. Effect of the α-β transition on mechanical properties of quartz. Ferroelectrics. 1982;43(1):77–86.
  • [44] Karunadasa KSP, Manoratne CH, Pitawala HMTGA, Rajapakse RMG. The composition, unit cell parameters and microstructure of quartz during phase transformation from α to β as examined by in situ high-temperature X-ray powder diffraction. J Phys Chem Solids. 2018;117:131–8.
  • [45] Aires-Barros L, Graça RC, Velez A. Dry and wet laboratory tests and thermal fatigue of rocks. Eng Geol. 1973;9:249–65.
  • [46] Hall K. The role of thermal stress fatigue in the breakdown of rock in cold regions. Geomorphology. 1999;31:47–63.
  • [47] Xi D, Xu S, Tao Y, Li T. Experimental investigations of thermal damage for rocks. Key Eng Mater. 2006;324–325:1213–6.
  • [48] Lamp JL, Marchant DR, Mackay SL, Head JW. Thermal stress weathering and the spalling of Antarctic rocks. J Geophys Res Earth Surf. 2017;122:3–24.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c04758b1-8580-4afa-a396-66f8171744d2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.