PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Advances in wastewater remediation using functionalized metallic and semiconductor nanomaterials: A systematic review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The increasing scarcity of water resources has driven the need for innovative solutions for wastewater reclamation using different nanomaterials. The purpose of the research was to establish the progress of wastewater remediation using functionalized metallic and semiconductor nanomaterials. A systematic review was carried out following the preferred reporting items for systematic reviews and meta-analyses (PRISMA) methodology with a search comprised between the years 2010 to 2024, from which 50 scientific articles were selected that met inclusion and exclusion criteria. Magnetic, noble, and chalcogenide metallic nanomaterials, as well as semiconductor nanomaterials, were considered. As an advance it was reported that the most efficient nanomaterial in the recovery of contaminated water is ZnO that when functionalized has high adsorption capacity of several heavy metals ions (Cd2+, Hg2+ and Pb2+), being reusable for several cycles; for its part, functionalized CuO is highly efficient in the adsorption of Ni²⁺ and Cd²⁺ having an efficiency of 99.16%; another advance found is the use of magnetic nanoparticles Fe3O4 and Fe2O3 for specific adsorption of heavy metal ions with efficiencies above 99%, and with significant reusability with magnetic desorption methods; for adsorption of dyes and colorants the compound CoFeO reaches efficiencies of 98.6% for methylene blue and 95.3% for rhodamine B; semiconducting nanomaterials such as TiO2 stand out in the degradation of organic pollutants by photocatalysis, managing to remove up to 95% of dyes and pesticides; finally, advanced functionalization techniques, such as the use of L-cysteine in Au nanoparticles, have enabled the rapid detection of heavy metals through color changes in plasmons. It is concluded that these advances not only improve efficiency in the remediation of water contaminated by heavy metals, dyes, colorants, and organic and inorganic pollutants in general but also promote sustainability through the repeated use of nanomaterials, which reduces costs and minimizes environmental impact.
Twórcy
  • Programa de Posdoctorado en Metodología de la Investigación y Producción Científica, México, Instituto Universitario de Innovación Ciencia y Tecnología Universidad Hipócrates, Inudi Perú,
  • Instituto de Investigación de Ciencias de Ingeniería, Facultad de Ingeniería Electrónica-Sistemas, Universidad Nacional de Huancavelica, Jr. La Mar 755, Pampas 09156, Huancavelica, Perú
  • Instituto de Investigación de Ciencias de Ingeniería, Facultad de Ingeniería Electrónica-Sistemas, Universidad Nacional de Huancavelica, Jr. La Mar 755, Pampas 09156, Huancavelica, Perú
  • Instituto de Investigación de Ciencias de Ingeniería, Facultad de Ingeniería Electrónica-Sistemas, Universidad Nacional de Huancavelica, Jr. La Mar 755, Pampas 09156, Huancavelica, Perú
  • Facultad de Ciencias Forestales y Ambiente, Universidad Nacional del Centro del Perú, Av. Mariscal Castilla 3909-4089, Huancayo, Perú
Bibliografia
  • 1. Agarwal, S., & Kumar, D. S. (2021). Surface functionalization of nanoparticles for stability in biological systems. Microbial Interactions at Nanobiotechnology Interfaces 129–166. https://doi.org/10.1002/9781119617181.ch4
  • 2. Agustina, L., Suprihatin, S., Romli, M., Suryadarma, P. (2020). Current development, potentials, and challenges of biological synthesis of nanoparticle (as a photocatalyst): A review. IOP Publishing 980(1), 12005. https://doi.org/10.1088/1757-899x/980/1/012005
  • 3. Alengebawy, A., Abdelkhalek, S. T., Qureshi, S. R., Wang, M. (2021). Heavy metals and pesticides toxicity in agricultural soil and plants: ecological risks and human health implications. Multidisciplinary Digital Publishing Institute 9(3), 42). https://doi.org/10.3390/toxics9030042
  • 4. Ali, A., Mannan, A., Ali Shah, U., Zia, M. (2022). Removal of toxic metal ions (Ni2+ and Cd2+) from wastewater by using TOPO decorated iron oxide nanoparticles. Applied Water Science, 12(5). https://doi.org/10.1007/s13201-022-01588-5. https://doi.org/10.1007/s13201-022-01588-5
  • 5. Ali, I., Peng, C., Ye, T., Naz, I. (2018). Sorption of cationic malachite green dye on phytogenic magnetic nanoparticles functionalized by 3-marcaptopropanic acid. RSC Advances, 8(16), 8878–8897. https://doi.org/10.1039/c8ra00245b
  • 6. Ali, O. I., Zaki, E. R., Abdalla, M. S., Ahmed, S. M. (2023). Mesoporous Ag-functionalized magnetic activated carbon-based agro-waste for efficient removal of Pb(II), Cd(II), and microorganisms from wastewater. Environmental Science and Pollution Research, 30(18), 53548–53565. https://doi.org/10.1007/s11356-023-26000-w
  • 7. Alotaibi, A. A. A., Shukla, A. K., Mrad, M. H., Alswieleh, A. M., Alotaibi, K. M. (2021). Fabrication of polysulfone-surface functionalized mesoporous silica nanocomposite membranes for removal of heavy metal ions from wastewater. Membranes, 11(12). https://doi.org/10.3390/membranes11120935
  • 8. Alzahrani, F. M., Alsaiari, N. S., Katubi, K. M., Amari, A., Tahoon, M. A. (2022). Synthesis, characterization, and application of magnetized Lanthanum (III)-based metal-organic framework for the organic dye removal from water. Adsorption Science and Technology, 2022. https://doi.org/10.1155/2022/3513829. https://doi.org/10.1155/2022/3513829.
  • 9. Aude Luppi, V. E., Oppezzo, O. J., Fidalgo de Cortalezzi, M. M. (2022). Comparative assessment of oxygen uptake rate of activated sludge and Escherichia coli exposed to nanomaterials. Chemical Engineering Journal Advances, 11, 100351. https://doi.org/10.1016/j.ceja.2022.100351
  • 10. Avornyo, A., Thanigaivelan, A., Krishnamoorthy, R., Hassan, S. W., Banat, F. 2023. Ag-CuO-decorated ceramic membranes for effective treatment of oily wastewater. Membranes, 13(2). https://doi.org/10.3390/membranes13020176
  • 11. Bahjat Kareem, A., Al-Rawi, U. A., Khalid, U., Sher, F., Zafar, F., Naushad, M., Nemțanu, M. R., Lima, E. C. (2024). Functionalised graphene oxide dual nanocomposites for treatment of hazardous environmental contaminants. Separation and Purification Technology, 342. https://doi.org/10.1016/j. seppur.2024.126959
  • 12. Bemowsky, S., Rother, A., Willmann, W., Köser, J., Markiewicz, M., Dringen, R., Stolte, S. (2019). Quantification and biodegradability assessment of meso-2,3-dimercaptosuccinic acid adsorbed on iron oxide nanoparticles. Nanoscale Advances, 1(9), 3670–3679. https://doi.org/10.1039/c9na00236g
  • 13. Bukhari, A., Ijaz, I., Nazir, A., Hussain, S., Zain, H., Gilani, E., Lfseisi, A. A., Ahmad, H. (2024). Functionalization of Shorea faguetiana biochar using Fe2O3 nanoparticles and MXene for rapid removal of methyl blue and lead from both single and binary systems. RSC Advances, 14(6), 3732–3747. https://doi.org/10.1039/d3ra07250a
  • 14. Carbajal-Morán, H., Rivera-Esteban, J. M., Aldama-Reyna, C. W., Mejía-Uriarte, E. V. (2022). Functionalization of gold nanoparticles for the detection of heavy metals in contaminated water samples in the province of Tayacaja. Journal of Ecological Engineering, 23(9), 88–99. https://doi.org/10.12911/22998993/151745
  • 15. Chandra, L., Jalalah, M., Alsaiari, M., Balakrishna, R. G., Harraz, F. A. (2022). Comprehensive analysis of spinel-type mixed metal oxide-functionalized polysulfone membranes toward fouling resistance and dye and natural organic matter removal. ACS Omega, 7(6), 4859–4867. https://doi.org/10.1021/ acsomega.1c05311
  • 16. Chen, D., Awut, T., Liu, B., Ma, Y., Wang, T., Nurulla, I. (2016). Functionalized magnetic Fe3O4 nanoparticles for removal of heavy metal ions from aqueous solutions. E-Polymers, 16(4), 313–322. https://doi.org/10.1515/epoly-2016-0043
  • 17. Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070
  • 18. Franzoso, F., Nisticò, R., Cesano, F., Corazzari, I., Turci, F., Scarano, D., Bianco Prevot, A., Magnacca, G., Carlos, L., Mártire, D. O. (2017). Biowaste-derived substances as a tool for obtaining magnet-sensitive materials for environmental applications in wastewater treatments. Chemical Engineering Journal, 310, 307–316. https://doi.org/10.1016/j.cej.2016.10.120
  • 19. Ganea, I.-V., Nan, A., Baciu, C., Turcu, R. (2021). Effective removal of crystal violet dye using neoteric magnetic nanostructures based on functionalized poly (Benzofuran-co-arylacetic acid): Investigation of the adsorption behaviour and reusability. Nanomaterials, 11(3), 1–15. https://doi.org/10.3390/ nano11030679
  • 20. Gautam, M., Kim, J. O., Yong, C. S. (2021). Fabrication of aerosol-based nanoparticles and their applications in biomedical fields. Journal of Pharmaceutical Investigation, 51(4), 361–375. https://doi.org/10.1007/s40005-021-00523-1
  • 21. Geetha, M. P., Pratheeksha, P., Subrahmanya, B. K. (2020). Development of functionalized CuO nanoparticles for enhancing the adsorption of methylene blue dye. Cogent Engineering, 7(1). https://doi.org/10.1080/23311916.2020.1783102
  • 22. Gentile, L., Mateos, H., Mallardi, A., Dell’Aglio, M., De Giacomo, A., Cioffi, N., Palazzo, G. (2021). Gold nanoparticles obtained by ns-pulsed laser ablation in liquids (ns-PLAL) are arranged in the form of fractal clusters. Journal of Nanoparticle Research, 23(2), https://doi.org/10.1007/s11051-021-05140-5
  • 23. Ghamarpoor, R., Fallah, A., Jamshidi, M. (2024). A Review of synthesis methods, modifications, and mechanisms of ZnO/TiO2-based photocatalysts for photodegradation of contaminants. ACS Omega, 9(24), 25457–25492. https://doi.org/10.1021/ acsomega.3c08717
  • 24. Gour, P., Kumar, J., Arland, S. E., Roy, L. D., Rahman, N. (2024). Green synthesis of DL-homocysteine decorated magnetic nanoparticles for selective and efficient mercury remediation from simulated wastewater: Kinetics, isotherm, and mechanism studies. Environmental Engineering Research, 29(5). https://doi.org/10.4491/eer.2023.584
  • 25. Hamza, M. F., Hamad, D. M., Hamad, N. A., Abdel- Rahman, A. A.-H., Fouda, A., Wei, Y., Guibal, E., El- Etrawy, A.-A. S. (2022). Functionalization of magnetic chitosan microparticles for high-performance removal of chromate from aqueous solutions and tannery effluent. Chemical Engineering Journal, 428, 131775. https://doi.org/10.1016/j.cej.2021.131775
  • 26. Hao, B., Guo, J., Zhang, L., Ma, H. (2022). Cr-doped TiO2/CuO photocatalytic nanofilms prepared by magnetron sputtering for wastewater treatment. Ceramics International, 48(5), 7106–7116. https://doi.org/10.1016/j.ceramint.2021.11.270
  • 27. Hirschi, S., Ward, T. R., Meier, W. P., Müller, D. J., Fotiadis, D. (2022). Synthetic biology: Bottom-up assembly of molecular systems. Chemical Reviews, 122(21), 16294–16328. https://doi.org/10.1021/acs. chemrev.2c00339
  • 28. Hossain, N., Nizamuddin, S., Ball, A. S., Shah, K. (2024). Synthesis, performance and reaction mechanisms of Ag-modified multi-functional rice husk solvochar for removal of multi-heavy metals and water-borne bacteria from wastewater. Process Safety and Environmental Protection, 182, 56–70. https://doi.org/10.1016/j.psep.2023.11.058
  • 29. Hou, C., Zhao, D., Chen, W., Li, H., Zhang, S., Liang, C. (2020). Covalent organic framework-functionalized magnetic cufe2o4/ag nanoparticles for the reduction of 4-nitrophenol. Nanomaterials, 10(3). https://doi.org/10.3390/nano10030426
  • 30. Huston, M., DeBella, M., DiBella, M., Gupta, A. (2021). Green synthesis of nanomaterials. In Multidisciplinary Digital Publishing Institute 11(8), 2130. https://doi.org/10.3390/nano11082130
  • 31. Isawi, H. (2020). Using Zeolite/Polyvinyl alcohol/ sodium alginate nanocomposite beads for removal of some heavy metals from wastewater. Arabian Journal of Chemistry, 13(6), 5691–5716. https://doi.org/10.1016/j.arabjc.2020.04.009
  • 32. Ismail, Z. A., Saed, U. A., Prola, L. D. T., Zhang, S., Sher, E. K., Naushad, M., Sher, F. (2024). Facile synthesis of sustainable magnetic core-shell silicate nano copolymers for toxic metals extraction in fixed bed column. Chemical Engineering Research and Design, 203, 583–594. https://doi.org/10.1016/j. cherd.2024.02.008
  • 33. Jassim, Z. S., Braihi, A. J., Shabeeb, K. M. (2024). Performance of graphene oxide-titanium dioxide, polyethersulphone membranes for industrial wastewater treatment. Ecological Engineering & Environmental Technology, 25(9), 336–347. https://doi.org/10.12912/27197050/190862
  • 34. Jia, C., Zhao, J., Lei, L., Kang, X., Lu, R., Chen, C., Li, S., Zhao, Y., Yang, Q., Chen, Z. (2019). Novel magnetically separable anhydride-functionalized Fe3O4@SiO2@PEI-NTDA nanoparticles as effective adsorbents: synthesis, stability and recyclable adsorption performance for heavy metal ions. RSC Advances, 9(17), 9533–9545. https://doi.org/10.1039/c8ra10310k
  • 35. Jin, X., Liu, R., Wang, H., Han, L., Qiu, M., Hu, B. (2022). Functionalized porous nanoscale Fe3O4 particles supported biochar from peanut shell for Pb(II) ions removal from landscape wastewater. Environmental Science and Pollution Research, 29(25), 37159–37169. https://doi.org/10.1007/ s11356-021-18432-z
  • 36. Kanth P, C., Trivedi, M. U., Patel, K., Misra, N. M., Pandey, M. K. (2021). Cucurbituril-functionalized nanocomposite as a promising industrial adsorbent for rapid cationic dye removal. ACS Omega, 6(4), 3024–3036. https://doi.org/10.1021/ acsomega.0c05400
  • 37. Kazemi, A., Bahramifar, N., Heydari, A., Olsen, S. I. (2019). Synthesis and sustainable assessment of thiol-functionalization of magnetic graphene oxide and superparamagnetic Fe3O4@SiO2 for Hg(II) removal from aqueous solution and petrochemical wastewater. Journal of the Taiwan Institute of Chemical Engineers, 95, 78–93. https://doi.org/10.1016/j.jtice.2018.10.002
  • 38. Khamcharoen, W., Henry, C. S., Siangproh, W. (2022). A novel L-cysteine sensor using in-situ electropolymerization of L-cysteine: Potential to simple and selective detection. Talanta, 237, 122983. https://doi.org/10.1016/j.talanta.2021.122983
  • 39. Khoramian, R., Issakhov, M., Pourafshary, P., Gabdullin, M., Sharipova, A. (2024). Surface modification of nanoparticles for enhanced applicability of nanofluids in harsh reservoir conditions: A comprehensive review for improved oil recovery. Advances in Colloid and Interface Science, 333, 103296. https://doi.org/10.1016/j.cis.2024.103296
  • 40. Lian, Z., Wei, C., Gao, B., Yang, X., Chan, Y., Wang, J., Chen, G. Z., Koh, K. S., Shi, Y., Yan, Y., Ren, Y., He, J., Liu, F. (2020). Synergetic treatment of dye contaminated wastewater using microparticles functionalized with carbon nanotubes/titanium dioxide nanocomposites. RSC Advances, 10(16), 9210–9225. https://doi.org/10.1039/c9ra10899h
  • 41. Lin, H. K., Yan, T.-H., Bashir, S., Liu, J. L. (2022). Chapter 3 - Synthesis of nanomaterials using bottom-up methods (J. L. Liu, T.-H. Yan, & S. B. T.-A. N. and T. A. in R. E. (Second E. Bashir (eds.); 61–110. Elsevier. https://doi.org/10.1016/B978-0-323-99877-2.00003-5
  • 42. Liu, Y., Hou, C., Jiao, T., Song, J., Zhang, X., Xing, R., Zhou, J., Zhang, L., Peng, Q. (2018). Self-assembled AgNP-containing nanocomposites constructed by electrospinning as efficient dye photocatalyst materials for wastewater treatment. Nanomaterials, 8(1). https://doi.org/10.3390/nano8010035
  • 43. Loccufier, E., Deventer, K., Manhaeghe, D., Van Hulle, S. W. H., D’hooge, D. R., De Buysser, K., De Clerck, K. (2020). Degradation kinetics of isoproturon and its subsequent products in contact with TiO2 functionalized silica nanofibers. Chemical Engineering Journal, 387, 124143. https://doi.org/10.1016/j.cej.2020.124143
  • 44. Lu, H., Wang, J., Stoller, M., Wang, T., Bao, Y., Hao, H. (2016). An overview of nanomaterials for water and wastewater treatment. Hindawi Publishing Corporation, 2016, 1–10. https://doi.org/10.1155/2016/4964828
  • 45. Lütterbeck, C. A., Colares, G. S., Dell’Osbel, N., da Silva, F. P., Kist, L. T., Machado, Ê. L. (2020). Hospital laundry wastewaters: A review on treatment alternatives, life cycle assessment and prognosis scenarios. Journal of Cleaner Production, 273, 122851. https://doi.org/10.1016/j.jclepro.2020.122851
  • 46. Madkour, M., Nazer, H. A. El, Abdel-Monem, Y. K. (2021). Use of chalcogenides-based nanomaterials for photocatalytic heavy metal reduction and ion removal. In M. M. B. T.-C.-B. N. as P. Khan (Ed.), Micro and Nano Technologies 261–283. https://doi.org/10.1016/B978-0-12-820498-6.00011-1
  • 47. Mandal, A., Das, A., Das, R., Bhattacharjee, C. (2021). Preparation of graphene nanoparticle surface modified metal oxide doped soda-lime glass composite for application in water purification. NanoWorld Journal, 7(3), 35–39. https://doi.org/10.17756/nwj.2021-090
  • 48. McIntyre, H. M., Hart, M. L. (2021). Immobilization of thio2 nanoparticles in cement for improved photocatalytic reactivity and treatment of organic pollutants. Catalysts, 11(8). https://doi.org/10.3390/catal11080938
  • 49. Mishra, S., Bharagava, R. N., More, N., Yadav, A., Zainith, S., Mani, S., Chowdhary, P. (2018). Heavy Metal Contamination: An Alarming Threat to Environment and Human Health. Springer Nature 103– 125. https://doi.org/10.1007/978-981-10-7284-0_5
  • 50. Modi, S., Yadav, V. K., Amari, A., Alyami, A. Y., Gacem, A., Harharah, H. N., Fulekar, M. H. (2023). Photocatalytic degradation of methylene blue dye from wastewater by using doped zinc oxide nanoparticles. Water (Switzerland), 15(12). https://doi.org/10.3390/w15122275
  • 51. Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Annals of Internal Medicine, 151(4), 264–269. https://doi.org/10.7326/0003-4819-151-4-200908180-00135
  • 52. Nagaraj, S., Cheirmadurai, K., Thanikaivelan, P. (2021). Visible-light active collagen-TiO2 nanobio-sponge for water remediation: A sustainable approach. Cleaner Materials, 1, 100011. https://doi.org/10.1016/j.clema.2021.100011
  • 53. Naharuddin, N. Z. A., Abu Bakar, M. H., Sadrolhosseini, A. R., Tamchek, N., Alresheedi, M. T., Abas, A. F., Mahdi, M. A. (2022). Pulsed-laser-ablated gold-nanoparticles saturable absorber for mode-locked erbium-doped fiber lasers. Optics & Laser Technology, 150, 107875. https://doi.org/10.1016/j. optlastec.2022.107875
  • 54. Navaneetha Pandiyaraj, K., Vasu, D., Raji, A., Ghobeira, R., Saadat Esbah Tabaei, P., De Geyter, N., Morent, R., Ramkumar, M. C., Pichumani, M., Deshmukh, R. R. (2023). Combined effects of direct plasma exposure and pre-plasma functionalized metal-doped graphene oxide nanoparticles on wastewater dye degradation. Journal of Industrial and Engineering Chemistry, 122, 185–199. https://doi.org/10.1016/j.jiec.2023.02.020
  • 55. Nazim, V. S., El-Sayed, G. M., Amer, S. M., Nadim, A. H. (2023). Functionalized SnO2 nanoparticles with gallic acid via green chemical approach for enhanced photocatalytic degradation of citalopram: synthesis, characterization and application to pharmaceutical wastewater treatment. Environmental Science and Pollution Research, 30(2), 4346–4358. https://doi.org/10.1007/s11356-022-22447-5
  • 56. Nguyen, D. Q., Duong, P. T., Nguyen, H. M., Nam, N. H., Luong, N. H., Pham, Y. (2016). New biological treatment targeting Mycobacterium tuberculosis in contaminated wastewater using lysing enzymes coupled to magnetic nanoparticles. Green Processing and Synthesis, 5(5), 473–478. https://doi.org/10.1515/gps-2016-0024
  • 57. Norouzian Baghani, A., Mahvi, A. H., Gholami, M., Rastkari, N., Delikhoon, M. (2016). One-Pot synthesis, characterization and adsorption studies of amine-functionalized magnetite nanoparticles for removal of Cr (VI) and Ni (II) ions from aqueous solution: Kinetic, isotherm and thermodynamic studies. Journal of Environmental Health Science and Engineering, 14(1). https://doi.org/10.1186/s40201-016-0252-0
  • 58. Ntshangase, N. C., Sadare, O. O., Daramola, M. O. (2021). Effect of silica sodalite functionalization and pva coating on performance of sodalite infused psf membrane during treatment of acid mine drainage. Membranes, 11(5). https://doi.org/10.3390/ membranes11050315
  • 59. Ojemaye, M. O. O., Okoh, O. O., Okoh, A. I. (2018). Uptake of Zn2+ and As3+ from wastewater by adsorption onto imine functionalized magnetic nanoparticles. Water (Switzerland), 10(1). https://doi.org/10.3390/w10010036
  • 60. Paramasivam, G., Sanmugam, A., Palem, V. V., Sevanan, M., Sairam, A. B., Nachiappan, N., Youn, B., Lee, J. S., Nallal, M., Park, K. H. (2024). Nanomaterials for detection of biomolecules and delivering therapeutic agents in theragnosis: A review. International Journal of Biological Macromolecules, 254. https://doi.org/10.1016/j.ijbiomac.2023.127904
  • 61. Pervikov, A. V. 2021. Metal, Metal Composite, and Composited Nanoparticles Obtained by Electrical Explosion of Wires. Nanobiotechnology Reports, 16(4), 401–420. https://doi.org/10.1134/ S2635167621040091
  • 62. Qayyum, H., Ali, R., Rehman, Z. U., Ullah, S., Shafique, B., Dogar, A. H., Shah, A., Qayyum, A. (2019). Synthesis of silver and gold nanoparticles by pulsed laser ablation for nanoparticle enhanced laser-induced breakdown spectroscopy. Journal of Laser Applications, 31(2), 22014. https://doi.org/10.2351/1.5086838
  • 63. Rajendran, S., Yadav, V. K., Gacem, A., Algethami, J. S., Alqahtani, M. S., Aldakheel, F. M., Binshaya, A. S., Alharthi, N. S., Khan, I. A., Islam, S., Ahn, Y., Jeon, B.-H. (2022). Functionalized microbial consortia with silver-doped hydroxyapatite (Ag@HAp) nanostructures for removal of RO84 from industrial effluent. Crystals, 12(7). https://doi.org/10.3390/cryst12070970
  • 64. Rawat, J., Jaiswal, K. K., Das, N., Kumar, S., Gururani, P., Bisht, B., Vlaskin, M. S., Nayak, M., Kumar, V. 2023. Hydrothermal liquefaction of freshwater microalgae biomass using Fe3O4 nanoparticle as a catalyst. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45(4), 12988–13000. https://doi.org/10.1080/15567036.2023.2277892
  • 65. Salih, S. J., Ali, L. I. A., Hamad, W. M. 2024. Novel synthesis and characterization of magnesium-doped CoFe2O4 nanoparticles -SiO2 -3-aminopropylethoxysilane- gallic acid magnetic nanocomposite for effective removal of cationic dyes. Arabian Journal of Chemistry, 17(3). https://doi.org/10.1016/j.arabjc.2024.105647
  • 66. Samadder, R., Akter, N., Roy, A. C., Uddin, M. M., Hossen, M. J., Azam, M. S. (2020). Magnetic nanocomposite based on polyacrylic acid and carboxylated cellulose nanocrystal for the removal of cationic dye. RSC Advances, 10(20), 11945–11956. https://doi.org/10.1039/d0ra00604a
  • 67. Sarfraz, N., Khan, I. (2021). Plasmonic gold nanoparticles (AuNPs): properties, synthesis and their advanced energy, environmental and biomedical applications. Chemistry-An Asian Journal, 16(7), 720–742. https://doi.org/10.1002/asia.202001202
  • 68. Sarkis-Onofre, R., Catalá-López, F., Aromataris, E., Lockwood, C. (2021). How to properly use the PRISMA Statement. Systematic Reviews, 10(1), 117. https://doi.org/10.1186/s13643-021-01671-z
  • 69. Singh, N. J., Wareppam, B., Ghosh, S., Sahu, B. P., Ajikumar, P. K., Singh, H. P., Chakraborty, S., Pati, S. S., Oliveira, A. C., Barg, S., Garg, V. K., Singh, L. H. (2020). Alkali-cation-incorporated and functionalized iron oxide nanoparticles for methyl blue removal/decomposition. Nanotechnology, 31(42). https://doi.org/10.1088/1361-6528/ab9af1
  • 70. Szczyglewska, P., Feliczak-Guzik, A., Nowak, I. (2023). Nanotechnology-general aspects: A chemical reduction approach to the synthesis of nanoparticles. Molecules, 28(13). https://doi.org/10.3390/ molecules28134932
  • 71. Tanweer, M. S., Iqbal, Z., Rather, A. M., Alam, M. (2024). Zinc Oxide/Moringa Oleifera Gum-Grafted L-Methionine-Functionalized polyaniline bionanocomposites for water purification. Water (Switzerland), 16(18). https://doi.org/10.3390/w16182576
  • 72. Tao, Y., Zhang, C., Lü, T., Zhao, H. (2020). Removal of Pb(II) ions from wastewater by using polyethyleneimine-functionalized Fe3O4 magnetic nanoparticles. Applied Sciences (Switzerland), 10(3). https://doi.org/10.3390/app10030948
  • 73. Venkateswarlu, S., Himagirish Kumar, S., Jyothi, N. V. V. (2015). Rapid removal of Ni(II) from aqueous solution using 3-Mercaptopropionic acid functionalized bio magnetite nanoparticles. Water Resources and Industry, 12, 1–7. https://doi.org/10.1016/j.wri.2015.09.001
  • 74. Vikal, S., Gautam, Y. K., Meena, S., Parewa, V., Kumar, A., Kumar, A., Meena, S., Kumar, S., Singh, B. P. 2023. Surface functionalized silver-doped ZnO nanocatalyst: a sustainable cooperative catalytic, photocatalytic and antibacterial platform for waste treatment. Nanoscale Advances, 5(3), 805–819. https://doi.org/10.1039/d2na00864e
  • 75. Vishnu, D., Dhandapani, B. (2020). Integration of cynodon dactylon and muraya koenigii plant extracts in amino-functionalised silica-coated magnetic nanoparticle as an effective sorbent for the removal of chromium(VI) metal pollutants. IET Nanobiotechnology, 14(6), 449–456. https://doi.org/10.1049/iet-nbt.2019.0313
  • 76. Zhang, S., Zhou, H., Kong, N., Wang, Z., Fu, H., Zhang, Y., Xiao, Y., Yang, W., Yan, F. (2021). L-cysteine-modified chiral gold nanoparticles promote periodontal tissue regeneration. Bioactive Materials, 6(10), 3288–3299. https://doi.org/10.1016/j. bioactmat.2021.02.035
  • 77. Zhao, X., Zhao, H., Yan, L., Li, N., Shi, J., Jiang, C. (2020). Recent developments in detection using noble metal nanoparticles. Critical Reviews in Analytical Chemistry, 50(2), 97–110. https://doi.org/10. 1080/10408347.2019.1576496
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c0468f49-ac79-4b6a-a15a-b11e9e781afd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.