PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An empirical study on environmental efficiency measurements and influencing factors

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Airlines are an important part of the comprehensive transportation system. Therefore, it is of great practical significance to empirically analyse the measurement of airlines’ environmental efficiency and influencing factors. Adopting the SBM-DEA model, this study measured the environmental efficiency of 20 Chinese airlines between 2010 and 2017 and empirically analysed the factors influencing their environmental efficiency using a Tobit regression model. Spring Airlines, China Southern Airlines, and Hainan Airlines were found to have the highest environmental efficiency. Tianjin Airlines, Hebei Airlines, and China Express Airlines had the lowest environmental efficiency. The Tobit regression results showed that average flight distance, load factor, market share, and proportion of cargo and mail turnover had a significant positive effect on airline environmental efficiency. Fuel consumption per ton-km had a significant negative effect on airline environmental efficiency.
Rocznik
Strony
543--553
Opis fizyczny
Bibliogr. 29 poz., tab.
Twórcy
autor
  • Research Center for Environment and Sustainable Development of the China Civil Aviation, Civil Aviation University of China, Tianjin 300300, China
autor
  • College of Economics and Management, Civil Aviation University of China, Tianjin 300300, China
autor
  • Research Center for Environment and Sustainable Development of the China Civil Aviation, Civil Aviation University of China, Tianjin 300300, China
  • School of Business, Wuyi University, Wuyishan 354300, China
  • University of Electronic Science and Technology of China Zhongshan Institute, China
Bibliografia
  • [1] Ma XM, Zhang C, Xiong SQ, Tian YS. Environmental efficiency and factors analysis of industry sector in china: an empirical analysis based on super-SBM. Ecol Economy. 2018;34(11):96-102. http://www.cnki.com.cn/Article/CJFDTOTAL-STJJ201811018.htm.
  • [2] Lin RJ. Using fuzzy DEMATEL to evaluate the green supply chain management practices. J Clean Prod. 2013;40:32-9. DOI: 10.1016/j.jclepro.2011.06.010.
  • [3] Chen J, Cheng JH, Sheng, Dai S. Regional eco-innovation in China: an analysis of eco-innovation levels and influencing factors. J Clean Prod. 2017;153:1-14. DOI: 10.1016/j.jclepro.2017.03.141.
  • [4] Guan JC, Chen KH. Measuring the innovation production process: a cross-region empirical study of China’s high-tech innovation. Technovation. 2010;30:348-58. DOI: 10.3923/itj.2011.1484.1497.
  • [5] Sun LY, Miao CL, Li Y. Ecological-economic efficiency evaluation of green technology innovation in strategic emerging industries based on entropy weighted TOPSIS method. Ecol Indicators. 2017;73:554-8. DOI: 10.1016/j.ecolind.2016.10.018.
  • [6] Liang XD, Si DY, Zhang XL. Regional sustainable development analysis based on information entropy-Sichuan province as an example. Int J Environ Res Public Health. 2017;14(10):1219. DOI: 10.3390/ijerph14101219.
  • [7] Sun P, Song LF. Calculation of China's marine environmental efficiency based on undesired super efficiency-Malmquist Model. China Population, Resour Environ. 2019;29(02):43-51. DOI: 10.12062/cpre.20180722.
  • [8] Chen L, Wang YM. Environmental efficiency of China's transportation industry from the perspective of technological differences. J Transport Systems Eng Inform Technol. 2018;18(06):22-7. DOI: 10.16097/j.cnki.1009-6744.2018.06.004.
  • [9] Li L, Li JS, Jiang ZL. Evolution and genetic mechanism of resource environmental efficiency pattern in central China based on SBM-DEA model. Resources and Environment in the Yangtze Basin. 2017;26(11):1761-73. DOI: 10.11870/cjlyzyyhj201711005.
  • [10] Guo SD, Tong M, Guo J. Measurement and influencing factors of inter-provincial real environmental efficiency based on three-stage DEA model. China Population, Resour Environ. 2018;28(3):106-16. DOI: 10.12062/cpre.20170917.
  • [11] Zou B, Elke M, Hansen M, Kafle N. Evaluating air carrier fuel efficiency in the US airline industry. Transportation Res Part A: Policy Practice. 2014;59(1):306-30. DOI: 10.1016/j.tra.2013.12.003.
  • [12] Tone K. Dealing with undesirable outputs in DEA: A slacks-based measure (SBM) approach. Tokyo: National Graduate Institute for Policy Studies, 2003. Available from: https://www.researchgate.net/publication/284047010_Dealing_with_undesirable_outputs_in_DEA_a_Slacks-Based_Measure_SBM_approach.
  • [13] Cui Q, Li Y. Airline energy efficiency measures considering carbon abatement: A new strategic framework. Transportation Res Part D. 2016;49:246-58. DOI: 10.1016/j.trd.2016.10.003.
  • [14] Chang YT, Park HS, Jeong JB. Evaluating economic and environmental efficiency of global airlines: A SBM-DEA approach. Transportation Res Part D. 2014;27(03):46-50. DOI: 10.1016/j.trd.2013.12.013.
  • [15] Jain RK, Natarajan R. A DEA study of airlines in India. Asia Pacific Manage Rev. 2015;20(4):285-92. DOI: 10.1016/j.apmrv.2015.03.004.
  • [16] Zhao YZ, Zhou JW, Yan HB. Research on airlines enterprises energy efficiency evaluation under EU ETS: Based on a non-radial DEA windows model. Manage Rev. 2015;27(05):38-47. DOI: 10.14120/j.cnki.cn11-5057/f.2015.05.005.
  • [17] Su WZ, Li H. The industrial environmental efficiency and its influencing factors of “One Belt and One Road”. Sci Technol Progress Policy. 2018;35(19):155-60. DOI: 10.6049/kjjbydc.2018050784.
  • [18] Hong S, Zhang A. An efficiency study of airlines and air cargo/passenger divisions: a DEA approach. World Rev Int Transportation Res. 2010;3(1/2):137-49. DOI: 10.1504/WRITR.2010.031584.
  • [19] Zhang JF, Fang H. Energy efficiency of airlines and its influencing factors: A comparison between China and the United States. Resources, Conserv Recycling. 2017;125(4):1-8. DOI: 10.1016/j.resconrec.2017.05.007.
  • [20] Christoph PK, Javier CH, Pablo DR, Barroso C, Javier F. Diversity of eco-innovations: a quantitative approach. J Cleaner Prod. 2017;166:1494-506. DOI: 10.1016/j.jclepro.2017.07.241.
  • [21] Żuk O, Kosior G, Oloś G. Characteristics of acute toxicity dynamics of selected toxicants on aquatic crustaceans. Ecol Chem Eng S. 2019;26(2):397-408. DOI: 10.1515/eces-2019-0028.
  • [22] Sołowski G, Konkol I, Cenian A. Perspectives of hydrogen production from corn wastes in Poland by means of dark fermentation. Ecol Chem Eng S. 2019;26(2):255-263. DOI: 10.1515/eces-2019-0031.
  • [23] Bhore SJ. Paris agreement on climate change: a booster to enable sustainable global development and beyond. Int J Environ Res Public Health. 2016;13:1134. DOI: 10.3390/ijerph13111134.
  • [24] Marszałek M, Kowalski Z, Makara A. The possibility of contamination of water-soil environment as a result of the use of pig slurry. Ecol Chem Eng S. 2019;26(2):313-30. DOI: 10.1515/eces-2019-0022.
  • [25] Huang G, Ali S. Local sustainability and gender ratio: evaluating the impacts of mining and tourism on sustainable development in Yunnan, China. Int J Environ Res Public Health. 2015;12:927-39. DOI: 10.3390/ijerph120100927.
  • [26] Ali M, Cantner U, Roy I. Knowledge spillovers through FDI and trade: the moderating role of quality-adjusted human capital. J Evolutionary Economics. 2015;26(4):1-32. DOI: 10.1007/s00191-016-0462-8.
  • [27] Ghosh D, Shah J. A comparative analysis of greening policies across supply chain structures. Int J Prod Economics. 2012;135(2):568-83. DOI: 10.1016/j.ijpe.2011.05.027.
  • [28] Ghosh D, Shah J. Supply chain analysis under green sensitive consumer demand and cost sharing contract. Int J Prod Economics. 2015;164:319-29. DOI: 10.1016/j.ijpe.2014.11.005.
  • [29] Esfahbodi A, Zhang Y, Watson G. Sustainable supply chain management in emerging economies: Trade-offs between environmental and cost performance. Int J Prod Economics. 2016;181:350-66. DOI: 10.1016/j.ijpe.2016.02.013.
Uwagi
EN
This research described in this paper was supported by a grant from the National Social Science Fund of China (No. 13CGL005) and a grant from the Scientific Research Project of Tianjin Education Commission (No. 2019SK105).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c044e119-a5c2-42f8-8a4d-994092a597a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.