PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Mathematical model for the management of the wave processes in three-winding transformers with consideration of the main magnetic flux in mining industry

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the work is to study the wave processes in three-winding power transformers caused by impulse overvoltage, to create an improved mathematical model for reproducing the process of distribution and transmission of the impulse in the windings of a three-winding power transformer. A mathematical model has been developed for the study of internal overvoltage in the windings of three-winding power transformers, based on the proposed substitute circuit of an infinitesimal element, taking into account the longitudinal and transverse inductive connections between the turns of the winding, the electromagnetic connections between the windings and the flux splitting from the main magnetic flux of the magnetic wire, in the form of a system of differential equations in partial derivatives using a modified method of variable separation. The formation of initial and boundary conditions for this mathematical model is presented. The results of the study of the distribution of overvoltage along the windings of a three-winding power transformer as a function of distance and time during the action of a voltage pulse on them are presented, as well as the distribution of overvoltage at different points of the winding of high, medium and low voltage as a function of time. The study of the wave processes in the windings of a three-winding power transformer makes it possible to form new approaches to the coordination of the insulation in the windings of the transformer, replacing physical experiments. The choice of insulation for high and ultra-high-voltage power transformers remains a particularly difficult engineering task since it is necessary to know the maximum voltage values at different points of the winding. The mathematical model presented can be used to create more complex models that allow a more detailed study of the wave processes.
Rocznik
Strony
20--39
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
autor
  • Lviv Polytechnic National University, 79013, L'vov, Stepana Bandera St., 12, Ukraine
autor
  • Dnipro University of Technology, 49005, Dnipro, av. Dmytra Yavornytskoho, Ukraine
  • Lviv Polytechnic National University, 79013, L'vov, Stepana Bandera St., 12, Ukraine
  • Lviv Polytechnic National University, 79013, L'vov, Stepana Bandera St., 12, Ukraine
  • AGH University of Science and Technology, Faculty of Management, 30059, al. Mickiewicza 30, Krakow, Poland
  • Central Mining Institute, 40166, Plac Gwarkow 1, Katowice, Poland
  • Spółka Restrukturyzacji Kopalń S.A., 30059, Strzelców Bytomskich 207, Bytom, Poland
Bibliografia
  • [1] Li F, Zhang Y, Xu J, Zhu M, Zhang C. Simulation research on sweep frequency impedance characteristics of transformer winding based on three-phase three-winding lumped parameter model. 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE) 2020;45(32): 346-65. https://doi.org/10.1109/ichve49031.2020.9280077.
  • [2] Kolb A, Pazynich Y, Mirek A, Petinova O. Influence of voltage reserve on the parameters of parallel power active compensators in mining. E3S Web of Conferences 2020;201: 01024. https://doi.org/10.1051/e3sconf/202020101024.
  • [3] Savukov I, Karaulanov T. Multi-flux-transformer MRI detection with an atomic magnetometer. J Magn Reson 2014; 249:49-52. https://doi.org/10.1016/j.jmr.2014.10.009.
  • [4] Kang Y-C, Lee B-E, Zheng T-Y, Kim Y-H, Crossley PA. Protection, faulted phase and winding identification for the three-winding transformer using the increments of flux linkages. IET Gener, Transm Distrib 2010;4(9):1060. https://doi.org/10.1049/iet-gtd.2010.0094.
  • [5] Polyanska A, Pazynich Y, Sabyrova M, Verbovska L. Directions and prospects of the development of educational services in conditions of energy transformation: the aspect of the coal industry. Polityka Energetyczna - Energy Policy Journal 2023; 26(2):195-216. https://doi.org/10.33223/epj/162054.
  • [6] Lüdtke N, Logothetis NK, Panzeri S. Testing methodologies for the nonlinear analysis of causal relationships in neurovascular coupling. Magn Reson Imag 2010;28(8):1113-9. https://doi.org/10.1016/j.mri.2010.03.028.
  • [7] Polyanska A, Savchuk S, Dudek M, Sala D, Pazynich Y, Cicho D. Impact of digital maturity on sustainable development effects in energy sector in the condition of Industry 4.0. Naukovyi Visnyk Natsionalnoho Hirnychoho Uni- versytetu 2022;6:97-103. https://doi.org/10.33271/nvngu/2022-6/097.
  • [8] Vladyko O, Maltsev D, Sala D, Cichon D, Buketov V, Dychkovskyi R. Simulation of leaching processes of polymetallic ores using the similarity theorem. Rudarsko-Geolosko-Naftni Zb 2022;37(5):169-80. https://doi.org/10.17794/rgn.2022.5.14.
  • [9] Dyczko A. Real-time forecasting of key coking coal quality parameters using neural networks and artificial intelligence. Rudarsko-Geolosko-Naftni Zb 2023;64:105-17. https://doi.org/10.17794/rgn.2023.3.9.
  • [10] Nikolsky V, Dychkovskyi R, Cabana EC, Howaniec N, Jura B, Widera K, et al. The hydrodynamics of Translational - Rotational motion of incompressible gas flow within the working space of a vortex heat generator. Energies 2022;15(4):1431. https://doi.org/10.3390/en15041431.
  • [11] Linnik KS, Neyman LA. Numerical simulation of electromagnetic processes in power transformers taking into account the nonlinearities of Magnetic Bonds. J Phys Conf 2021;2032(1):012091. https://doi.org/10.1088/1742-6596/2032/1/012091.
  • [12] Mombello Enrique E, Guillermo A, Florez Diaz. An improved high frequency white-box lossy transformer model for the calculation of power systems electromagnetic transients. Elec Power Syst Res 2021;190. https://doi.org/10.1016/j.epsr.2020.106838. Article106838,ISSN 0378-7796.
  • [13] Mombello EE, Venerdini GG, Diaz Florez GA. Optimized high-frequency white-box transformer model for implementation in ATP-EMTP. Elec Power Syst Res 2022;213. https://doi.org/10.1016/j.epsr.2022.108709. Article108709, ISSN 0378-7796.
  • [14] Dychkovskyi RO. Forming the bilayer artificially shell of georeactor in underground coal gasification. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 2015;5:37-42.
  • [15] Murad Mohammed Ahsan Adib, Francisco Jose Orts Gomez, Vanfretti Luigi. Equation-based modeling of three-winding and regulating transformers using Modelica. 2015 IEEE Eindhoven PowerTech; 2015. p. 1-6. https://doi.org/10.1109/PTC.2015.7232503.
  • [16] Zhao X, Yao C, Abu-Siada A, Liao R. High frequency electric circuit modeling for transformer frequency response analysis studies. Int J Electr Power Energy Syst 2019;111:351-68. https://doi.org/10.1016/j.ijepes.2019.04.010.
  • [17] Pivnyak GG, Beshta OO. A complex source of electrical energy for three-phase current based on a stand-alone voltage inverter. Naukovyi Visnyk Natsionalnoho Hirnychoho Uni- versytetu 2020;1:89-93. https://doi.org/10.33271/nvngu/2020-1/089.
  • [18] Yoon Yeunggurl, Son Yongju, Cho Jintae, Jang SuHyeong, Kim Young-Geun, Choi Sungyun. High-frequency modeling of a three-winding power transformer using sweep frequency response analysis. Energies 2021;14(13):4009. https://doi.org/10.3390/en14134009.
  • [19] Baravati Peyman Rezaei, Moazzami Majid, Seyed Mohammad Hassan Hosseini, Mirzaei Hassan Reza, Fani Bahador. Achieving the exact equivalent circuit of a large-scale transformer winding using an improved detailed model for partial discharge study. Int J Electr Power Energy Syst 2022; 134:107451. https://doi.org/10.1016/J.IJEPES.2021.107451.
  • [20] Mikulovic JC, Sekara TB. The numerical method of inverse Laplace transform for calculation of overvoltages in power transformers and test results. Serbian J Elect Eng June 2014; 11(No. 2):243-56.
  • [21] Bontidean SG, Badic M, Iordache M, Galan N. Simulations and experimental tests on the distribution of overvoltage within transformer windings. U.P.B. Sci. Bull. Series C 2015; 77(3).
  • [22] de Azevedo AC, Rezende I, Delaiba AC, Oliveira C, de Carvalho BC, de S Bronzeado H. Investigation of transformer electromagnetic forces caused by external faults using FEM. In: IEEE PES transmission and distribution conference and exposition. - Venezuela, Latin America; 2006. p. 1-6.
  • [23] Bontidean SG, Badic M, Iordache M, Galan N. Simulations and experimental tests on the distribution of overvoltage within transformer windings. U.P.B. Sci. Bull. Series C 2015; 77(3).
  • [24] Deaconu D, Chirilà A-I, Navrapescu V, Ghita C, Rachiteanu A, Viisoreanu A-M. The influence of parameters of a power transformer winding equivalent distributed circuit model on atmospheric overvoltage wave internal propagation along the windings. In: 2020 international conference and exposition on electrical and power engineering (EPE); 2020. p. 507-12. https://doi.org/10.1109/EPE50722.2020.9305584.
  • [25] Sala D, Bieda B. Application of uncertainty analysis based on Monte Carlo (MC) simulation for life cycle inventory (LCI). Inzynieria Mineralna 2019;2(2-44):263-8. https://doi.org/10.29227/im-2019-02-80.
  • [26] Beshta A, Beshta A, Balakhontsev A, Khudolii S. Performances of asynchronous motor within variable frequency drive with additional power source plugged via combined converter. In: 2019 IEEE 6th international conference on energy smart systems (ESS); 2019. https://doi.org/10.1109/ess.2019.8764192.
  • [27] CIGRE brochure 577A, electrical transient interaction between transformers and the power system. Part 1: expertise . Joint working group A2/C4.39. - CIGRE. April 2014. p. 176. http://www.http//xmlopez.webs.uvigo.es/Html/Info/2014_Electrical_Transients_Part1_Expertise.pdf.
  • [28] Seheda MS, Cheremnykh YV, Gogolyuk PF, Mazur TA, Blyznak YV. Mathematical model of wave processes in two-winding transformers//Tekhnichna Elektrodynamika. 2020. p. 5-14. https://doi.org/10.15407/techned2020.06.005. No 6.
  • [29] Seheda MS, Cheremnykh YV, Gogolyuk PF, Blyznak YV. Mathematical modeling of wave processes in two-winding transformers taking into account the main magnetic flux. Scientific Bulletin of National Mining University; 2021. p. 80-6. https://doi.org/10.33271/nvngu/2021-5/080. № 5 (185).
  • [30] Seheda MS, Cheremnykh YV, Mazur TA. Mathematical modeling of free voltage oscillations on transformer windings into accout winds mutual induction under surge overvoltages. Scientific Bulletin of National Mining University; 2013. p. 68-76. 1 (133).
  • [31] Seheda Mykhailo. Petro Gogolyuk and Yurii Blyznak Mathematical model of analysis of wave electromagnetic transients in three-winding transformers. In: 2022 IEEE 8th international conference on energy smart systems (ESS); 2022. p. 269-72. https://doi.org/10.1109/ESS57819.2022.9969302. Kyiv, Ukraine.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c04279ec-79eb-47f9-b9bf-f50650a770d5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.