PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Production of New Activated Carbon from Agricultural Waste and its Use as an Eco-Friendly Solution for Removing Copper Ions from Industrial Effluents

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study explored the production of activated carbon from agricultural waste, specifically Punica granatum peel, and its application as an eco-friendly solution for removing copper (Cu2+) ions from industrial effluents, particularly those from copper-plating industries. The Punica granatum peel was chemically activated using ortho-phosphoric acid to produce activated carbon. The activation process involved impregnation followed by thermal activation at 500 °C. The resultant activated carbon was characterized using FTIR, TGA/DTA, and adsorption tests at room temperature and pH 5, which demonstrated a Cu2+ ion retention rate exceeding 95% within the first 15 minutes. The adsorption kinetics were analyzed using pseudo-first-order and pseudo-second-order models, while the adsorption isotherms was examined using Langmuir and Freundlich models. The study demonstrated that the activated carbon derived from Punica granatum peel exhibits high adsorption efficiency for Cu2+ ions, with a maximum adsorption capacity of 19.62 mg/g. The adsorption process was best described by the pseudo-second-order kinetic model and the nonlinear Langmuir isotherm model. The newly developed activated carbon exhibits a markedly higher adsorption efficiency compared to existing activated carbons, highlighting its innovative potential for adsorbing Cu2+ ions. Consequently, its use proves to be a cost-effective and sustainable solution for treating copper-contaminated industrial effluents. In fact, this research offers a dual benefit by providing a sustainable waste management solution for agricultural residues and an effective method for treating industrial effluents. Incorporating this activated carbon in post-copper plating rinsing water treatment ensures regulatory compliance and facilitates water reuse. This approach also supports copper recovery and reuse in new plating baths, promoting cyclic material circulation within the industry.
Twórcy
  • Laboratory of Physical Chemistry, Materials and Environment, Faculty of Sciences and Technologies, Moulay Ismail University of Meknes, 52000, Errachidia, Morocco
  • Laboratory of Materials Engineering for the Environment and Natural Resources, Faculty of Sciences and Technologies, Moulay Ismail University of Meknes, 52000 Errachidia, Morocco
  • Laboratory of Materials Engineering for the Environment and Natural Resources, Faculty of Sciences and Technologies, Moulay Ismail University of Meknes, 52000 Errachidia, Morocco
  • Laboratory of Physical Chemistry, Materials and Environment, Faculty of Sciences and Technologies, Moulay Ismail University of Meknes, 52000, Errachidia, Morocco
  • Laboratory of Mechanics, Energetics, Automation, and Sustainable Development, Faculty of Sciences and Technologies, Moulay Ismail University of Meknes, 52000 Errachidia, Morocco
autor
  • Laboratory of Biomolecular and Macromolecular Chemistry, Faculty of Sciences, Moulay Ismail University of Meknes, 11201 Meknes, Morocco
Bibliografia
  • 1. Aâtach, M., Simão, M.A., Gaydardzhiev, S. 2024. Effects of ultrasound on the electrochemical cementation of copper onto iron. Minerals Engineering, 213, 108750. https://doi.org/10.1016/j.mineng.2024.108750
  • 2. Ahmed, S., Choudhury, T.R., Alam, Md. Z., Nurnabi, M. 2024. Characterization and application of synthesized calcium alginate-graphene oxide for the removal of Cr3+, Cu2+ and Cd2+ ions from tannery effluents. Cleaner Water, 1, 100016. https://doi.org/10.1016/j.clwat.2024.100016
  • 3. Ali Babeker, T.M., Lv, S., Wu, J., Zhou, J., Chen, Q. 2024. Insight into Cu (II) adsorption on pyrochar and hydrochar resultant from Acacia Senegal waste for wastewater decontamination. Chemosphere, 356, 141881. https://doi.org/10.1016/j.chemosphere.2024.141881
  • 4. Alkhanjaf, A.A.M., Sharma, S., Sharma, M., Kumar, R., Arora, N.K., Kumar, B., Umar, A., Baskoutas, S., Mukherjee, T.K. 2024. Microbial strategies for copper pollution remediation: Mechanistic insights and recent advances. Environmental Pollution, 346, 123588. https://doi.org/10.1016/j.envpol.2024.123588
  • 5. Assal, A., Nasrellah, H., Aarfane, A., Bakasse, M., El Mahi, M., El Mostapha, L. 2024. Supplementary treatment of wastewater by using ecological lime derived from eggshell waste: A new sustainable strategy for safe reuse. Ecological Engineering & Environmental Technology, 25(1), 180–189. https://doi.org/10.12912/27197050/174967
  • 6. Awogbemi, O., Von Kallon, D.V. 2023. Progress in agricultural waste derived biochar as adsorbents for wastewater treatment. Applied Surface Science Advances, 18, 100518. https://doi.org/10.1016/j.apsadv.2023.100518
  • 7. Baatache, O., Derbal, K., Benalia, A., Khalfaoui, A., Bouchareb, R., Panico, A., Pizzi, A. 2024. Use of pine cone as bio-coagulant for heavy metal removal from industrial wastewater: Use of Box–Behnken design. Industrial Crops and Products, 210, 118185. https://doi.org/10.1016/j.indcrop.2024.118185
  • 8. Delle Cave, V., Di Dato, F., Iorio, R. 2024. Wilson’s disease with acute hepatic onset: How to diagnose and treat It. Children, 11(1), 68. https://doi.org/10.3390/children11010068
  • 9. Duyen, L.T., Bac, B.H. 2024. Adsorption–desorption behavior of halloysite clay for Cu2+ ions and recovery of copper by electrodeposition method. Desalination and Water Treatment, 317, 100207. https://doi.org/10.1016/j.dwt.2024.100207
  • 10. Elboughdiri, N., Ferkous, H., Rouibah, K., Boublia, A., Delimi, A., Yadav, K.K., Erto, A., Ghernaout, D., Salih, A.A.M., Benaissa, M., Nenguerba, Y. 2024. Comprehensive investigation of Cu2+ adsorption from wastewater using olive-waste-derived adsorbents: Experimental and molecular insights. International Journal of Molecular Sciences, 25(2), 1028. https://doi.org/10.3390/ijms25021028
  • 11. Fita, G., Djakba, R., Mouhamadou, S., Duc, M., Rao, S., Popoola, L.T., Harouna, M., Benoit, L.B. 2023. Adsorptive efficiency of hull-based activated carbon toward copper ions (Cu2+) removal from aqueous solution: Kinetics, modelling and statistical analysis. Diamond and Related Materials, 139, 110421. https://doi.org/10.1016/j.diamond.2023.110421
  • 12. Gao, Y., Yue, Q., Gao, B., Li, A. 2020. Insight into activated carbon from different kinds of chemical activating agents: A review. Science of The Total Environment, 746, 141094. https://doi.org/10.1016/j.scitotenv.2020.141094
  • 13. Ghibate, R., Ben Baaziz, M., Amechrouq, A., Taouil, R., Senhaji, O. 2024. The performance of an ecofriendly adsorbent for methylene blue removal from aqueous solution: Kinetic, isotherm, and thermodynamic approaches. Journal of the Serbian Chemical Society. https://doi.org/10.2298/JSC230317037G
  • 14. Ghibate, R., Kerrou, M., Chrachmy, M., Ben Baaziz, M., Taouil, R., Senhaji, O. 2024. Utilizing agricultural waste for sustainable remediation of textile dyeing effluents. Ecological Engineering & Environmental Technology, 25(7), 369–378. https://doi.org/10.12912/27197050/188713
  • 15. Grich, A., Bouzid, T., Naboulsi, A., Regti, A., El Himri, M., El Haddad, M. 2024. Synthesis and optimization of activated carbon from Doum (Chamaerops humilis) fiber via pyrolysis-assisted H3 PO4 activation for removal of bisphenol A and α-Naphthol. Diamond and Related Materials, 145, 111061. https://doi.org/10.1016/j.diamond.2024.111061
  • 16. Gündoğan, R., Acemioğlu, B., Alma, M.H. 2004. Copper (II) adsorption from aqueous solution by herbaceous peat. Journal of Colloid and Interface Science, 269(2), 303–309. https://doi.org/10.1016/S0021-9797(03)00762-8
  • 17. Huang, X., Jin, K., Zhang, R., Gong, Y., Zeng, J., Zhang, R., Liu, Y., Xue, J. 2024. Selective solvent extraction of Cu(II) from aqueous solutions using an acyl-based thiourea: Extraction study and DFT analysis of reaction mechanism. Hydrometallurgy, 223, 106226. https://doi.org/10.1016/j.hydromet.2023.106226
  • 18. Kali, A., Amar, A., Loulidi, I., Jabri, M., Hadey, C., Lgaz, H., Alrashdi, A.A., Boukhlifi, F. 2024. Characterization and adsorption capacity of four lowcost adsorbents based on coconut, almond, walnut, and peanut shells for copper removal. Biomass Conversion and Biorefinery, 14(3), 3655–3666. https://doi.org/10.1007/s13399-022-02564-4
  • 19. Kan, Y., Yue, Q., Li, D., Wu, Y., Gao, B. 2017. Preparation and characterization of activated carbons from waste tea by H3 PO4 activation in different atmospheres for oxytetracycline removal. Journal of the Taiwan Institute of Chemical Engineers, 71, 494–500. https://doi.org/10.1016/j.jtice.2016.12.012
  • 20. Kaya, N., Arslan, F., Yıldız Uzun, Z., Ceylan, S. 2020. Kinetic and thermodynamic studies on the adsorption of Cu2+ ions from aqueous solution by using agricultural waste-derived biochars. Water Supply, 20(8), 3120–3140. https://doi.org/10.2166/ws.2020.193
  • 21. Khadem, M., Husni, I.A., Mokashi, I., Fahmi, A.H., Taqui, S.N., Mohanavel, V., Hossain, N., Koki, I.B., Elfasakhany, A., Dhaif-Allah, M.A.H., Soudagar, M.E.M., Sye, A.A. 2023. Removal of heavy metals from wastewater using low-cost biochar prepared from jackfruit seed waste. Biomass Conversion and Biorefinery, 13(16), 14447–14456. https://doi.org/10.1007/s13399-022-02748-y
  • 22. Khan, M., Al- Ghouti, M.A., Khraisheh, M., Shomar, B., Hijji, Y., Tong, Y., Mansour, S., Nasser, M.S. 2023. Synthesis of nanostructured novel ionimprinted polymer for selective removal of Cu2+ and Sr2+ ions from reverse osmosis concentrated brine. Environmental Research, 231, 116024. https://doi.org/10.1016/j.envres.2023.116024
  • 23. Khater, D., Alkhabbas, M., Al-Ma’abreh, A.M. 2024. Adsorption of Pb, Cu, and Ni ions on activated carbon prepared from oak cupules: Kinetics and thermodynamics studies. Molecules, 29(11), 2489. https://doi.org/10.3390/molecules29112489
  • 24. Koli, A., Pattanshetti, A., Mane-Gavade, S., Dhabbe, R., Kamble, R., Garadkar, K., Sabale, S. 2024. Agro-waste management through sustainable production of activated carbon for CO2 capture, dye and heavy metal ion remediation. Waste Management Bulletin, 2(1), 97–121. https://doi.org/10.1016/j.wmb.2023.12.010
  • 25. Lin, Y., Yuan, M., Wang, G. 2024. Copper homeostasis and cuproptosis in gynecological disorders: Pathogenic insights and therapeutic implications. Journal of Trace Elements in Medicine and Biology, 84, 127436. https://doi.org/10.1016/j.jtemb.2024.127436
  • 26. Liu, Y., Wang, H., Cui, Y., Chen, N. 2023. Removal of copper ions from wastewater: A review. International Journal of Environmental Research and Public Health, 20(5), 3885. https://doi.org/10.3390/ijerph20053885
  • 27. Loughlaımı, I., Bakher, Z., Zouhri, A. 2024. Enhanced heavy metal removal from wastewater produced by chemical analysis laboratory using calcium oxide precipitation: pH improvement and characterization of precipitated phases. Journal of the Turkish Chemical Society Section A: Chemistry, 11(1), 83–92. https://doi.org/10.18596/jotcsa.1321183
  • 28. Mokti, N., Borhan, A., Zaine, S.N.A., Mohd Zaid, H.F. 2021. Development of rubber seed shell–activated carbon using impregnated pyridinium-based ionic liquid for enhanced CO2 adsorption. Processes, 9(7), 1161. https://doi.org/10.3390/pr9071161
  • 29. Ouallal, H., Chrachmy, M., Azrour, M., Lechheb, M., El-Kordy, A., Dehmani, Y., Moussout, H., Azdouz, M. 2023. Study of acid treatment effect of a natural red clay onto physico-chemical and adsorption properties. Desalination and water treatment, 315, 96–110. https://doi.org/10.5004/dwt.2023.30114
  • 30. Ouallal, H., Chrachmy, M., El hamzaoui, N., Lechheb, M., Ghibate, R., El-marjaoui, H., Azrour, M. 2024. Insight on the natural Moroccan clay valorization for malachite green adsorption: Kinetic and isotherm studies. Materials Research Proceedings, 40, 273–283. https://doi.org/10.21741/9781644903117-29
  • 31. Packialakshmi, S., Anuradha, B., Nagamani, K., Sarala Devi, J., Sujatha, S. 2023. Treatment of industrial wastewater using coconut shell based activated carbon. Materials Today: Proceedings, 81, 1167– 1171. https://doi.org/10.1016/j.matpr.2021.04.548
  • 32. Radenković, M., Petrović, J., Pap, S., Kalijadis, A., Momčilović, M., Krstulović, N., Živković, S. 2024. Waste biomass derived highly-porous carbon material for toxic metal removal: Optimisation, mechanisms and environmental implications. Chemosphere, 347, 140684. https://doi.org/10.1016/j.chemosphere.2023.140684
  • 33. Rahimzadeh, M.R., Kazemi, S., Moghadamnia, A.A. 2024. Copper poisoning with emphasis on its clinical manifestations and treatment of intoxication. Advances in Public Health, 2024(1), 6001014. https://doi.org/10.1155/2024/6001014
  • 34. Saeed, A.Q., Khudhair, H.M., Alhamdani, A.S.H., Abbas, S.L., Abdulhasan, M.J. 2024. Using iron/nickel coated sand nanocomposites prepared by eucalyptus leaf extract for copper removal from aqueous solutions. Ecological Engineering & Environmental Technology, 25(7), 219–224. https://doi.org/10.12912/27197050/188192
  • 35. Salman, Md.S., Hasan, Md.N., Hasan, Md.M., Kubra, K.T., Sheikh, Md.C., Rehan, A.I., Waliullah, R.M., Rasee, A.I., Awual, M.E., Hossain, M.S., Alsukaibi, A.K.D., Alshammari, H.M., Awual, Md.R. 2023. Improving copper(II) ion detection and adsorption from wastewater by the ligand-functionalized composite adsorbent. Journal of Molecular Structure, 1282, 135259. https://doi.org/10.1016/j.molstruc.2023.135259
  • 36. Shakeel, S.R. 2021. Cleantech: Prospects and challenges. Journal of Innovation Management, 9(2), 8–17. https://doi.org/10.24840/2183-0606_009.002_0002
  • 37. Silva, M.C., Crespo, L.H.S., Cazetta, A.L., Silva, T.L., Spessato, L., Almeida, V.C. 2024. Activated carbon fibers of high surface area from corn husk: Mono and multicomponent adsorption studies of Pb2+ and Cu2+ ions from aqueous solution. Journal of Molecular Liquids, 405, 124919. https://doi.org/10.1016/j.molliq.2024.124919
  • 38. Singh, V., Ahmed, G., Vedika, S., Kumar, P., Chaturvedi, S.K., Rai, S.N., Vamanu, E., Kumar, A. 2024. Toxic heavy metal ions contamination in water and their sustainable reduction by eco-friendly methods: Isotherms, thermodynamics and kinetics study. Scientific Reports, 14(1), 7595. https://doi.org/10.1038/s41598-024-58061-3
  • 39. Tetteh, I.K., Issahaku, I., Tetteh, A.Y. 2024. Recent advances in synthesis, characterization, and environmental applications of activated carbons and other carbon derivatives. Carbon Trends, 14, 100328. https://doi.org/10.1016/j.cartre.2024.100328
  • 40. Więcek, S., Paprocka, J. 2024. Disorders of copper metabolism in children—A problem too rarely recognized. Metabolites, 14(1), 38. https://doi.org/10.3390/metabo14010038
  • 41. Wu, H.-Y., Chen, S.S., Liao, W., Wang, W., Jang, M.-F., Chen, W.-H., Ahamad, T., Alshehri, S.M., Hou, C.-H., Lin, K.-S., Charinpanitkul, T., Wu, K.C.-W. 2020. Assessment of agricultural wastederived activated carbon in multiple applications. Environmental Research, 191, 110176. https://doi.org/10.1016/j.envres.2020.110176
  • 42. Zakaria, K.K., Farag, H.A., El-Gayar, D.A. 2023. Removal of Cu2+, Fe2+ and SO4 2− ions from industrial wastewater by ion exchange resins contained in a rotating perforated cylindrical basket of different heights. Scientific Reports, 13(1), 3248. https://doi.org/10.1038/s41598-023-29956-4
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c041fc14-cf86-45e1-a222-764fd6f4c74f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.