PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of bioactive metal fillers on antimicrobial properties of PA12 composites produced by laser-based Powder Bed Fusion of Polymers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigated the influence of three types of metallic microfillers, spherical silver and spherical, and dendritic copper, on the ability of polyamide 12 (PA12) to inhibit microorganism growth on the surfaces of samples produced using laser-based powder bed fusion of polymers (PBF-LB/P). The aim of this study was to initially characterize these materials regarding their potential applicability for parts dedicated to use in the hospitals, which surfaces are periodically disinfected using chemical and/or physical measures.
Rocznik
Opis fizyczny
Bibliogr. 42 poz. rys., tab., wykr.
Twórcy
autor
  • Centre for Advanced Manufacturing Technologies – Fraunhofer Project Center, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
  • Centre for Advanced Manufacturing Technologies – Fraunhofer Project Center, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
  • Centre for Advanced Manufacturing Technologies – Fraunhofer Project Center, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
autor
  • “P.U.M.A.”, Platform for Unique Models Application, Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, Wroclaw, Poland
  • Medical Department, Lazarski University, Warsaw, Poland
  • “P.U.M.A.”, Platform for Unique Models Application, Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, Wroclaw, Poland
  • Centre for Advanced Manufacturing Technologies – Fraunhofer Project Center, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
Bibliografia
  • [1] Alshrefy AJ, Alwohaibi RN, Alhazzaa SA, Almaimoni RA, AlMusailet LI, AlQahtani SY, Alshahrani MS. Incidence of Bacterial and Fungal Secondary Infections in COVID-19 Patients Admitted to the ICU. Int J Gen Med. 2022 Sep 24;15:7475-7485. https://doi.org/10.2147/IJGM.S382687. PMID: 36187162; PMCID: PMC9518678
  • [2] Arnal N., Tacconi de Alaniz M. J., Marra C. A., Cytotoxic effects of copper overload on human-derived lung and liver cells in culture. Biochimica et Biophysica Acta 1820, 931-939 (2012). https://doi.org/10.1016/j.bbagen.2012.03.007.
  • [3] Balzereit S, Proes S, Altstädt S, Emmelmann C, Properties of copper modified polyamide 12-powders and their potential for the use as laser direct structurable electronic circuit carriers, Addit Manuf. 23 (2018) 347–354. https://doi.org/10.1016/j.addma.2018.08.016.
  • [4] Castaño N, Cordts SC, Kurosu Jalil M, Zhang KS, Koppaka S, Bick AD, Paul R, Tang SKY. Fomite Transmission, Physicochemical Origin of Virus-Surface Interactions, and Disinfection Strategies for Enveloped Viruses with Applications to SARS-CoV-2. ACS Omega. 2021 Mar 5;6(10):6509-6527. doi: 10.1021/acsomega.0c06335. PMID: 33748563; PMCID: PMC7944398.
  • [5] Coffey BM, Anderson GG. Biofilm Formation in the 96-Well Microtiter Plate. Methods in Molecular Biology 2014;1149:631–41. https://doi.org/10.1007/978-1-4939-0473-0_48.
  • [6] Equbal A, Akhter S, Sood AK, Equbal I. The usefulness of additive manufacturing (AM) in COVID-19. Annals of 3D Printed Medicine 2021;2. https://doi.org/10.1016/j.stlm.2021.100013.
  • [7] Falces-Romero I, Bloise I, García-Rodríguez J, Cendejas-Bueno E; SARS-CoV-2 Working Group. Staphylococcus aureus bacteremia in patients with SARS-CoV-2 infection. Med Clin (Engl Ed). 2023 Jun 9;160(11):495-498. doi: 10.1016/j.medcle.2023.05.007. PMID: 37311167; PMCID: PMC10250598.
  • [8] Frei, A., Verderosa, A.D., Elliott, A.G. et al. Metals to combat antimicrobial resistance. Nat Rev Chem 7, 202–224 (2023). https://doi.org/10.1038/s41570-023-00463-4
  • [9] Grela E, Kozłowska J, Grabowiecka A. Current methodology of MTT assay in bacteria – A review. Acta Histochem 2018;120:303–11. https://doi.org/10.1016/J.ACTHIS.2018.03.007.
  • [10] Gruber P, Hoppe V, Grochowska E, Paleczny J, Junka A, Smolina I, et al. Material extrusion-based additive manufacturing of poly(Lactic acid) antibacterial filaments—a case study of antimicrobial properties. Polymers (Basel) 2021;13. https://doi.org/10.3390/polym13244337.
  • [11] Gruber P, Ziółkowski G, Olejarczyk M, Grochowska E, Hoppe V, Szymczyk-Ziółkowska P, et al. Influence of bioactive metal fillers on microstructural homogeneity of PA12 composites produced by polymer Laser Sintering. Archives of Civil and Mechanical Engineering 2022;22:117. https://doi.org/10.1007/s43452-022-00442-4.
  • [12] Karoluk M, Koenig G, Kurzynowski T. Method of medical equipment evaluation and preparation for on-demand additive manufacturing with the conventional supply chain being broken: A case study of mask filter adapter production during COVID-19. Applied Sciences (Switzerland) 2021;11. https://doi.org/10.3390/app112412016.
  • [13] Kim IY, Seo SJ, Moon HS, Yoo MK, Park IY, Kim BC, et al. Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv 2008;26:1–21. https://doi.org/10.1016/j.biotechadv.2007.07.009.
  • [14] Kramer A, Dissemond J, Kim S, Willy C, Mayer D, Papke R, Tuchmann F, Assadian O. Consensus on Wound Antisepsis: Update 2018. Skin Pharmacol Physiol. 2018;31(1):28-58. Doi: 10.1159/000481545. Epub 2017 Dec 21.
  • [15] Kubin CJ, McConville TH, Dietz D, Zucker J, May M, Nelson B, et al. Characterization of Bacterial and Fungal Infections in Hospitalized Patients with Coronavirus Disease 2019 and Factors Associated with Health Care-Associated Infections. Open Forum Infect Dis 2021;8. https://doi.org/10.1093/ofid/ofab201.
  • [16] Lanzl L, Wudy K, Greiner S, Drummer D, Selective laser sintering of copper filled polyamide 12: Characterization of powder properties and process behavior, Polym Compos. 40 (2019) 1801–1809. https://doi.org/10.1002/pc.24940.
  • [17] Lee WH, Kim DS, Ahn YJ, Choi BO, Choi KH. Development of Industrial SFF System Using a New Selective Dual-Laser Sintering Process. Key Eng Mater 2006;326–328:123–6. https://doi.org/10.4028/www.scientific.net/kem.326-328.123.
  • [18] Liao C, Li Y, Tjong SC. Bactericidal and Cytotoxic Properties of Silver Nanoparticles. Int J Mol Sci. 21 (2019). https://doi.org/10.3390/ijms20020449.
  • [19] Logithkumar R, Keshavnarayan A, Dhivya S, Chawla A, Saravanan S, Selvamurugan N. A review of chitosan and its derivatives in bone tissue engineering. Carbohydr Polym 2016;151:172–88. https://doi.org/10.1016/j.carbpol.2016.05.049.
  • [20] Lu DE, Hung SH, Su YS, Lee W Sen. Analysis of Fungal and Bacterial Co-Infections in Mortality Cases among Hospitalized Patients with COVID-19 in Taipei, Taiwan. Journal of Fungi 2022;8. https://doi.org/10.3390/jof8010091.
  • [21] Mouriño V, Boccaccini AR. Bone tissue engineering therapeutics: Controlled drug delivery in three-dimensional scaffolds. J R Soc Interface 2010;7:209–27. https://doi.org/10.1098/rsif.2009.0379.
  • [22] Muñoz-Bonilla A, Fernández-García M. Polymeric materials with antimicrobial activity. Progress in Polymer Science (Oxford) 2012;37:281–339. https://doi.org/10.1016/j.progpolymsci.2011.08.005.
  • [23] Na, I.; Kennedy, D.C. Size-Specific Copper Nanoparticle Cytotoxicity Varies between Human Cell Lines. Int. J. Mol. Sci. 22 (2021). https://doi.org/10.3390/ijms22041548
  • [24] Olmos D, González‐benito J. Polymeric materials with antibacterial activity: A review. Polymers (Basel) 2021;13:1–30. https://doi.org/10.3390/polym13040613.
  • [25] Özbay B, Bekem A, Serhatlı I E, Öztürk S, Bulduk M E, Effects of copper fillers on mechanical and electrical properties of selective laser sintered PA 12-Cu composites, Materials Technology 2021, 37:10, 1541-1553, DOI: 10.1080/10667857.2021.1964203
  • [26] Özbay B, Koç E, Kısasöz A, Karabeyoğlu S. Dry sliding wear behavior of energy density dependent PA 12/Cu composites produced by selective laser sintering. Materials Testing. 2023;65(2): 303-312. https://doi.org/10.1515/mt-2022-0260
  • [27] Psochia E, Papadopoulos L, Gkiliopoulos DJ, Francone A, Grigora M-E, Tzetzis D, et al. Bottom-Up Development of Nanoimprinted PLLA Composite Films with Enhanced Antibacterial Properties for Smart Packaging Applications. Macromol 2021;1:49–63. https://doi.org/10.3390/macromol1010005.
  • [28] Repetto, G., del Peso, A. & Zurita, J. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc 3, 1125–1131 (2008). https://doi.org/10.1038/nprot.2008.75
  • [29] Rzeszuto J, Kaczor P, Kosztulska B, Handzlik I, Suwała S, Junik R. Is additive manufacturing a magic bullet to resupply lacking PPE? Producing respirators and face shields during COVID-19 pandemic: A systematic review [published online as ahead of print on December 15, 2021]. Polim Med. 2021. doi:10.17219/pim/144329
  • [30] Qiu H, Si Z, Luo Y, Feng P, Wu X, Hou W, et al. The Mechanisms and the Applications of Antibacterial Polymers in Surface Modification on Medical Devices. Front Bioeng Biotechnol 2020;8. https://doi.org/10.3389/fbioe.2020.00910.
  • [31] Salah, I., Parkin, I.P., Allan, E., Copper as an antimicrobial agent: recent advances. RSC Advances 11, 18179–18186 (2021). http://dx.doi.org/10.1039/D1RA02149D
  • [32] Segrelles-Calvo G, de S Araújo GR, Llopis-Pastor E, Carrillo J, Hernández-Hernández M, Rey L, et al. Candida spp. co-infection in COVID-19 patients with severe pneumonia: Prevalence study and associated risk factors. Respir Med 2021;188. https://doi.org/10.1016/j.rmed.2021.106619.
  • [33] Shafiekhani M, Shekari Z, Boorboor A, Zare Z, Arabsheybani S, Azadeh N. Bacterial and fungal co-infections with SARS-CoV-2 in solid organ recipients: a retrospective study. Virol J 2022;19. https://doi.org/10.1186/s12985-022-01763-9.
  • [34] Shumbula N. P., Ndala Z. B., Nkabinde S. S., Nchoe O., Macumele K., Mpelane S., Shumbula M. P., Mdluli P. S., Sibuyi N. R.S., Njengele-Tetyana Z., Tetyana P., Mlambo M., Moloto N., Antimicrobial activity and cytotoxicity of copper/polydopamine nanocomposites. Results in Chemistry 4, 100635 (2022) https://doi.org/10.1016/j.rechem.2022.100635.
  • [35] Turner RD, Wingham JR, Paterson TE, Shepherd J, Majewski C. Use of silver-based additives for the development of antibacterial functionality in Laser Sintered polyamide 12 parts. Sci Rep 2020;10:1–11. https://doi.org/10.1038/s41598-020-57686-4.
  • [36] Venkatesan J, Kim SK. Chitosan composites for bone tissue engineering - An overview. Mar Drugs 2010;8:2252–66. https://doi.org/10.3390/md8082252.
  • [37] Vilardell AM, Yadroitsava I, Wolf WKC, Du Plessis A, Tshibalanganda M, Kouprianoff DP, et al. Laser powder bed fusion of polyamide-composite for antibacterial applications: Characterization and properties. Mater Today Commun 2022;31. https://doi.org/10.1016/j.mtcomm.2022.103727.
  • [38] Wohlers T. Wohlers Report 2021: 3D Printing and Additive Manufacturing Global State of the Industry. 2021.
  • [39] Xiu ZM, Ma J, Alvarez PJJ. Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ Sci Technol 2011;45:9003–8. https://doi.org/10.1021/es201918f.
  • [40] Xiu ZM, Zhang QB, Puppala HL, Colvin VL, Alvarez PJJ. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 2012;12:4271–5. https://doi.org/10.1021/nl301934w.
  • [41] Zhou P, Liu Z, Chen Y, Xiao Y, Huang X, Fan XG. Bacterial and fungal infections in COVID-19 patients: A matter of concern. Infect Control Hosp Epidemiol 2020;41:1124–5. https://doi.org/10.1017/ice.2020.156.
  • [42] Zuniga JM, Cortes A. The role of additive manufacturing and antimicrobial polymers in the COVID-19 pandemic. Expert Rev Med Devices 2020;17:477–81. https://doi.org/10.1080/17434440.2020.1756771.
Uwagi
Brak numeracji stron
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c040c47d-308d-4fad-8b9b-231ded9d322a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.