PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of cooling techniques on cutting forces and surface roughness during cryogenic machining of titanium alloys

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ metod chłodzenia na siły oraz chropowatość podczas obróbki kriogenicznej stopów tytanu
Języki publikacji
EN
Abstrakty
EN
Titanium alloys are one of the materials extensively used in the aerospace industry due to its excellent properties of high specific strength and corrosion resistance. On the other hand, they also present problems wherein titanium alloys are extremely difficult materials to machine. In addition, the cost associated with titanium machining is also high due to lower cutting velocities and shorter tool life. The main objective of this work is a comparison of different cooling techniques during cryogenic machining of titanium alloys. The analysis revealed that applied cooling technique has a significant influence on cutting force and surface roughness (Ra parameter) values. Furthermore, in all cases observed a positive influence of cryogenic machining on selected aspects after turning and milling of titanium alloys. This work can be also the starting point to the further research, related to the analysis of cutting forces and surface roughness during cryogenic machining of titanium alloys.
Rocznik
Tom
Strony
12--17
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
autor
  • Institute of Mechanical Technology, Poznan University of Technology
autor
  • Institute of Mechanical Technology, Poznan University of Technology
Bibliografia
  • [1] An Q.L., Fu Y.C., Xu J.H., Experimental study on turning of TC9 titanium alloy with cold water mist jet cooling, International Journal of Machine Tools & Manufacture 51 (2011) 549-555.
  • [2] Bermingham M.J., Kirsch J., Sun S., Palanisamy S., Dargusch M.S., New observations on tool life, cutting forces and chip morphology in cryogenic machining Ti-6Al-4V, International Journal of Machine Tools & Manufacture 51 (2011) 500–511.
  • [3] Che-Haron C.H., Tool life and surface integrity in turning titanium alloy, Journal of Materials Processing Technology 118 (2001) 231–237.
  • [4] Che-Haron C.H., Jawaid A., The effect of machining on surface integrity of titanium, Journal of Materials Processing Technology 166 (2005) 188–192.
  • [5] Dandekar C.R., Shin Y.C., Barnes J., Machinability improvement of titanium alloy (Ti–6Al–4V) via LAM and hybrid machining, International Journal of Machine Tools & Manufacture 50 (2010) 174–182.
  • [6] Dhananchezian M., Kumar M.P., Cryogenic turning of the Ti-6Al-4V alloy with modified cutting tool inserts, Cryogenics, 51, pp. 34-40, 2011.
  • [7] Grzesik W., Żak K., Prażmowski M., Storch B., Pałka T., Effects of cryogenic cooling on surface layer characteristics produced by hard turning, Archives of Materials Science and Engineering 54/1 (2012) 5-12.
  • [8] Guo Y.B., Li W., Jawahir I.S., Surface integrity characterization and prediction in machining of hardened and difficult-to-machine alloys; a state-of-the-art research review and analysis, Machining Science and Technology 13 (2009) 437–470.
  • [9] Hong S.Y., Ding Y., Jeong W., Friction and cutting forces in cryogenic machining of Ti–6Al–4V, International Journal of Machine Tools & Manufacture 41 (2001) 2271–2285.
  • [10] Ke Y.-l. et al., Use of nitrogen gas in high-speed milling of Ti–6Al–4V, Transactions of Nonferrous Metals Society of China, 19 (3) 530–534 2009.
  • [11] Kenda J., Pusavec F., Kopac J., Analysis of Residual Stresses in Sustainable Cryogenic Machining of Nickel Based Alloy—Inconel 718, Journal of Manufacturing Science and Engineering, Vol. 133, 2011.
  • [12] Machai C., Biermann D., Machining of β-titanium-alloy Ti–10V–2Fe–3Al under cryogenic conditions: Cooling with carbon dioxide snow, Journal of Materials Processing Technology 211 (2011) 1175–1183.
  • [13] Mantle A.L., Aspinwall D.K., Surface integrity and fatigue life of turned gamma titanium aluminide, Journal of Materials Processing Technology 72 (1997) 413–420.
  • [14] Mantle A.L., Aspinwall D.K., Surface integrity of a high speed milled gamma titanium aluminide, Journal of Materials Processing Technology 118 (2001) 143–150.
  • [15] M’Saoubi M., Outeiro J.C., Chandrasekaran H., Dillon Jr. O.W., Jawahir I.S., A review of surface integrity in machining and its impact on functional performance and life of machined products, International Journal of Sustainable Manufacturing 1 (1–2) (2008) 203–236.
  • [16] Pusavec F. et al., Surface integrity in cryogenic machining of nickel based alloy–Inconel 718, Journal of Materials Processing Technology, 2011, vol. 211, no. 4, s. 773–783.
  • [17] Sharma V.S., Dogra M., Suri N.M., Cooling techniques for improved productivity in turning, International Journal of Machine Tools & Manufacture 49 (2009) 435-453.
  • [18] Shokrani A., Dhokia V., Newman S.T., Imani-Asrai R., An initial study of the effect of using liquid nitrogen coolant on the surface roughness of Inconel 718 nickel-based alloy in CNC milling, In: 45thCIRP conference on manufacturing systems, Athenes, 2012.
  • [19] Shokrani A., Dhokia V., Munõz-Escalona P., Newman S.T., State-of-the-art cryogenic machining and processing, International Journal of Computer Integrated Manufacturing, 2013.
  • [20] Singh Gill S., Singh J., Effect of deep cryogenic treatment on machinability of titanium alloy (Ti-6246) in electric discharge drilling, Materials and Manufacturing Processes, 25: 378–385, 2010.
  • [21] Sun S., Brandt M., Dargusch M.S., Machining Ti–6Al–4V alloy with cryogenic compressed air cooling, International Journal of Machine Tools & Manufacture 50 (2010) 933–942.
  • [22] Tirelli S., Economical comparison of cryogenic vs. traditional turning of Ti-6Al-4V: A case study, Key Engineering Materials, 651-653, pp. 1204-1210, 2015.
  • [23] Truesdale S.L., Shin Y.C., Microstructural analysis and machinability improvement of Udimet 720 via cryogenic milling, Machining Science and Technology, 13:1-19.
  • [24] Venugopal K. et al., Turning of titanium alloy with TiB 2-coated carbides under cryogenic cooling, Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 217 (12), 1697–1707, 2003.
  • [25] Wang Z.Y. et al., Hybrid machining of Inconel 718, International Journal of Machine Tools and Manufacture, 43 (13), 1391–1396, 2003.
  • [26] Wang Z.G., Rahman M., Wong Y.S., Tool wear characteristics of binderless CBN tools used in high-speed milling of titanium alloys, Wear 258 (2005) 752–758.
  • [27] Wang Z.Y., Rajurkar K.P., Cryogenic machining of hard-to-cut materials, Wear 239 _2000, 168–175.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c03f5912-1f16-47b5-95aa-ebccec1790ff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.