PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Background & Aims: Solute generation rates, distribution volumes and compartment effects control the in vivo efficiency of any extracorporeal therapy such as extracorporeal liver support (ELS) used to remove bile acids accumulating in acute-on-chronic liver patients. The aim of this study was to identify and to examine kinetic parameters of two major bile acids using mathematical modeling. Methods: The kinetics of cholic (CA) and chenodeoxycholic acid (CDCA) were described by one- and two-compartment models with central elimination by decreasing or constant extracorporeal clearance, constant bile acid generation rate, and constant apparent distribution volume. Concentration profiles collected in 13 ELS sessions done in 8 patients were included for model calculations Results: For the one-compartment model, the average volumes and generation rates were 30 ± 6 [l], 0.19 ± 0.06 [μmol/min] for CA and 22 ± 5 [l], 0.29 ± 0.08 [μmol/min] for CDCA, respectively. For the one-compartment model and average normalized concentrations, the volumes and genera- tion rates were 25 [l], 0.28 [μmol/min] for CA and 18 [l], 0.37 [μmol/min] for CDCA, respectively. For the two-compartment model, average normalized concentrations, the same initial concentration in both compartments, and assuming a 10% post-treatment rebound, the volume and generation rates were 25 [l], 0.27 [μmol/min] for CA and 19 [l], 0.32 [μmol/min] for CDCA, respectively. Conclusions: The generation rate for CDCA is higher when compared to that of CA and independent of the number of compartments. Assuming a constant extracorporeal clearance overestimates generation rate and distribution volume. The kinetic parameters of one-and two-compartment models are comparable for the same bile acid.
Twórcy
  • AGH University of Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Science and Technology, Krakow, Poland
  • Division of Nephrology and Hemodialysis, Department of Internal Medicine, Medical University of Graz, Graz, Austria
  • Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
  • Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
  • Otto Loewi Research Center, Division of Physiology, Medical University of Graz, Graz, Austria
Bibliografia
  • [1] Guiastrennec B, Sonne DP, Bergstrand M, Vilsboll T, Knop FK, Karlsson MO. Model-based prediction of plasma concentration and enterohepatic circulation of total bile acids in humans. CPT Pharmacometrics Syst Pharmacol 2018;7:603–12.
  • [2] Fiamoncini J, Yiorkas AM, Gedrich K, Rundle M, Alsters SI, Roeselers G, et al. Determinants of postprandial plasma bile acid kinetics in human volunteers. Am J Physiol Gastrointest Liver Physiol 2017;313:G300–12.
  • [3] Chiang JY. Bile acid metabolism and signaling. Compr Physiol 2013;3:1191–212.
  • [4] Hanafi NI, Mohamed AS, Sheikh Abdul Kadir SH, Othman MHD. Overview of bile acids signaling and perspective on the signal of ursodeoxycholic acid, the most hydrophilic bile acid, in the heart. Biomolecules 2018;8:159.
  • [5] Shapiro H, Kolodziejczyk AA, Halstuch D, Elinav E. Bile acids in glucose metabolism in health and disease. J Exp Med 2018;215:383–96.
  • [6] Xu Y. Recent progress on bile acid receptor modulators for treatment of metabolic diseases. J Med Chem 2016;59:6553–79.
  • [7] Li R, Zeng L, Xie S, Chen J, Yu Y, Zhong L. Targeted metabolomics study of serum bile acid profile in patients with end-stage renal disease undergoing hemodialysis. PeerJ 2019;7e7145.
  • [8] Hofmann AF. The continuing importance of bile acids in liver and intestinal disease. Arch Intern Med 1999;159:2647–58.
  • [9] Danićanic M, Stanimirov B, Pavlovic N, Golocorbin-Kon S, Al-Salami H, Stankov K, et al. Pharmacological applications of bile acids and their derivatives in the treatment of metabolic syndrome. Front Pharmacol 2018;9:1382.
  • [10] Stadlbauer V, Krisper P, Beuers U, Haditsch B, Schneditz D, Jung A, et al. Removal of bile acids by two different extracorporeal liver support systems in acute-on-chronic liver failure. ASAIO J 2007;53:187–93.
  • [11] Naumann S, Schweiggert-Weisz U, Bader-Mittermaier S, Haller D, Eisner P. Differentiation of adsorptive and viscous effects of dietary fibres on bile acid release by means of in vitro digestion and dialysis. Int J Mol Sci 2018;192193.
  • [12] Naumann S, Schweiggert-Weisz U, Eglmeier J, Haller D, Eisner P. In vitro interactions of dietary fibre enriched food ingredients with primary and secondary bile acids. Nutrients 2019;111424.
  • [13] Yetti H, Naito H, Yuan Y, Jia X, Hayashi Y, Tamada H, et al. Bile acid detoxifying enzymes limit susceptibility to liver fibrosis in female SHRSP5/Dmcr rats fed with a high-fat-cholesterol diet. PLoS One 2018;13e0192863.
  • [14] Notenboom S, Weigand KM, Proost JH, van Lipzig MMH, van de Steeg E, van den Broek PHH, et al. Development of a mechanistic biokinetic model for hepatic bile acid handling to predict possible cholestatic effects of drugs. Eur J Pharm Sci 2018;115:175–84.
  • [15] Baier V, Cordes H, Thiel C, Castell JV, Neumann UP, Blank LM, et al. A physiology-based model of human bile acid metabolism for predicting bile acid tissue levels after drug administration in healthy subjects and BRIC type 2 patients. Front Physiol 2019;10:1192.
  • [16] Mazzarelli C, Prentice WM, Heneghan MA, Belli LS, Agarwal K, Cannon MD. Palliative care in end-stage liver disease: Time to do better? Liver Transpl 2018;24:961–8.
  • [17] Mitzner SR. Extracorporeal liver support-albumin dialysis with the Molecular Adsorbent Recirculating System (MARS). Ann Hepatol 2011;10 (Suppl 1):S21-8.
  • [18] Mitzner SR, Stange J, Klammt S, Koball S, Hickstein H, Reisinger EC. Albumin dialysis MARS: knowledge from 10 years of clinical investigation. ASAIO J 2009;55:498–502.
  • [19] Jung A, Krisper P, Haditsch B, Stauber RE, Trauner M, Holzer H, et al. Bilirubin kinetic modeling for quantification of extracorporeal liver support. Blood Purif 2006;24:413–22.
  • [20] Jung A, Korohoda P, Krisper P, Schneditz D. Relationship between kinetics of albumin-bound bilirubin and water- soluble urea in extracorporeal blood purification. Nephrol Dial Transplant 2012;27:1200–6.
  • [21] Jung A, Krisper P, Schneditz D. Measures of efficiency in extracorporeal liver support systems. Romanian J Hepatol 2006;2:55–63.
  • [22] Klapdor R. Necessity of a 3-compartmental model for analyzing the distribution and excretion kinetics of i.v. injected bile acids in man. Acta Hepatogastroenterol (Stuttg) 1978;25:193–202.
  • [23] Klapdor R. Further evidence for the superiority of a 3- compartmental model for distribution analyses of i.v. injected bile acids in men: studies in patients with liver diseases. Acta Hepatogastroenterol (Stuttg) 1979;26:23–5.
  • [24] Depner T. Prescribing hemodialysis: a guide to urea modeling. Boston/Dordrecht/London: Kluwer Academic Publishers,; 1991.
  • [25] Lindstedt S. The turnover of cholic acid in man: bile acids and steroids. Acta Physiol Scand 1957;40:1–9.
  • [26] Stellaard F, Sackmann M, Sauerbruch T, Paumgartner G. Simultaneous determination of cholic acid and chenodeoxycholic acid pool sizes and fractional turnover rates in human serum using 13C-labeled bile acids. J Lipid Res 1984;25:1313–9.
  • [27] Hulzebos CV, Renfurm L, Bandsma RH, Verkade HJ, Boer T, Boverhof R, et al. Measurement of parameters of cholic acid kinetics in plasma using a microscale stable isotope dilution technique: application to rodents and humans. J Lipid Res 2001;42:1923–9.
  • [28] Sauer P, Rudolph G, Endele R, Senn M, Theilmann L, Otto G, et al. Kinetics of primary bile acids in patients after orthotopic liver transplantation. Eur J Clin Invest 1996;26:979–82.
  • [29] Staels B, Fonseca VA. Bile acids and metabolic regulation: mechanisms and clinical responses to bile acid sequestration. Diabetes Care 2009;32(Suppl 2):S237–245.
  • [30] Aron J, Agarwal B, Davenport A. Extracorporeal support for patients with acute and acute on chronic liver failure. Expert Rev Med Devices 2016;13:367–80.
  • [31] Lee KC, Stadlbauer V, Jalan R. Extracorporeal liver support devices for listed patients. Liver Transpl 2016;22:839–48.
  • [32] Krisper P, Stadlbauer V, Stauber RE. Clearing of toxic substances: are there differences between the available liver support devices? Liver Int 2011;31(Suppl 3):5–8.
  • [33] Chomicki S, Dahmani O. The impact of intensified hemodialysis on pruritus in an end stage renal disease patient with biliary ductopenia. Case Rep Nephrol 2015;2015236419.
  • [34] Bañares R, Nevens F, Larsen FS, Jalan R, Albillos A, Dollinger M. Extracorporeal albumin dialysis with the molecular adsorbent recirculating system in acute-on-chronic liver failure: the RELIEF trial. Hepatology 2013;57:1153–62.
  • [35] Hassanein TI, Tofteng F, Brown RS, McGuire B, Lynch P, Mehta R. Randomized controlled study of extracorporeal albumin dialysis for hepatic encephalopathy in advanced cirrhosis. Hepatology 2007;46.
  • [36] Heemann U, Treichel U, Loock J, Philipp T, Gerken G, Malago M, et al. Albumin dialysis in cirrhosis with superimposed acute liver injury: a prospective, controlled study. Hepatology 2002;36:949–58.
  • [37] Kribben A, Gerken G, Haag S, Herget-Rosenthal S, Treichel U, Betz C, et al. Effects of fractionated plasma separation and adsorption on survival in patients with acute-on- chronic liver failure. Gastroenterology 2012;142:782–9. e3.
  • [38] Nevens F, Laleman W. Artificial liver support devices as treatment option for liver failure. Best Pract Res Clin Gastroenterol 2012;26:17–26.
  • [39] Rifai K. Fractionated plasma separation and adsorption: current practice and future options. Liver Int 2011;31(Suppl 3):13–5.
  • [40] Saliba F, Camus C, Durand F, Mathurin P, Delafosse B, Barange K, et al. Predictive factors of transplant free survival in patients with fulminant and subfulminant hepatic failure: results from a randomized controlled multicenter trial. J Hepatol 2009;50:S89–90.
  • [41] Gerth HU, Pohlen M, Tholking G, Pavenstadt H, Brand M, Wilms C, et al. Molecular adsorbent recirculating system (MARS) in acute liver injury and graft dysfunction: results from a case-control study. PLoS One 2017;12. e0175529.
  • [42] Ibanez-Samaniego L, Catalina MV, Rincon D, Lo Iacono O, Fernandez A, Clemente G, et al. Liver support with albumin dialysis reduces hepatitis C virus viremia and facilitates antiviral treatment of severe hepatitis C virus recurrence after liver transplantation. Ther Apher Dial 2016;20:189–96.
  • [43] Sponholz C, Matthes K, Rupp D, Backaus W, Klammt S, Karailieva D, et al. Molecular adsorbent recirculating system and single-pass albumin dialysis in liver failure - a prospective, randomised crossover study. Crit Care 2016;20:2.
  • [44] Lee SY, Kim HJ, Choi D. Cell sources, liver support systems and liver tissue engineering: alternatives to liver transplantation. Int J Stem Cells 2015;8:36–47.
  • [45] Wittebole X, Hantson P. Use of the molecular adsorbent recirculating system (MARS) for the management of acute poisoning with or without liver failure. Clin Toxicol (Phila) 2011;49:782–93.
  • [46] Xia Q, Dai X, Huang J, Xu X, Yang Q, Liu X, et al. A single-center experience of non-bioartificial liver support systems among Chinese patients with liver failure. Int J Artif Organs 2014;37:442–54.
  • [47] Yu CB, Pan XP, Li LJ. Progress in bioreactors of bioartificial livers. Hepatobiliary Pancreat Dis Int 2009;8:134–40.
  • [48] Nyberg SL. Bridging the gap: advances in artificial liver support. Liver Transpl 2012;18(Suppl 2):S10–14.
  • [49] Dominik A, Stange J, Baumann AK, Pfensig C, Suraj M, Ibrahim B, et al. Targeting albumin binding function as a therapy goal in liver failure: development of a novel adsorbent for albumin dialysis. Ther Apher Dial 2018;22:196–204.
  • [50] Soo E, Sanders A, Heckert K, Vinke T, Schaefer F, Schmitt CP. Comparison of two different modes of molecular adsorbent recycling systems for liver dialysis. Pediatr Nephrol 2016;31:2171–4.
  • [51] Hartmann J, Harm S. Removal of bile acids by extracorporeal therapies: an in vitro study. Int J Artif Organs 2017;41:52–7.
  • [52] Schmuck RB, Nawrot GH, Fikatas P, Reutzel-Selke A, Pratschke J, Sauer IM. Single pass albumin dialysis-A dose-finding study to define optimal albumin concentration and dialysate flow. Artif Organs 2017;41:153–61.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c03e7162-f9e2-4652-8863-5a312c830581
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.