PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Minimizing total completion time for preemptive scheduling with release dates and deadline constraints

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It is known that the single machine preemptive scheduling problem of minimizing total completion time with release date and deadline constraints is NP-hard. Du and Leung solved some special cases by the generalized Baker's algorithm and the generalized Smith's algorithm in O(n2) time. In this paper we give an O(n2) algorithm for the special case where the processing times and deadlines are agreeable. Moreover, for the case where the processing times and deadlines are disagreeable, we present two properties which could enable us to reduce the range of the enumeration algorithm.
Rocznik
Strony
17--26
Opis fizyczny
Bibliogr. 10 poz., rys.
Twórcy
autor
  • School of Science, Henan University of Technology, Zhengzhou, Henan 450052, China
autor
  • School of Science, Henan University of Technology, Zhengzhou, Henan 450052, China
autor
  • Department of Mathematics, Zhengzhou University, Zhengzhou, Henan 450052, China
autor
  • School of Science, Henan University of Technology, Zhengzhou, Henan 450052, China
Bibliografia
  • [1] Baker, K.R. Introduction to Sequencing and Scheduling. Wiley, New York, 1974.
  • [2] Baker, K.R., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G. Preemptive scheduling of a single machine to minimize maximum cost subject to release dates and precedence constraints. Operations Research, 26: 111-120 (1983).
  • [3] Brucker, P. Scheduling Algorithms (third edition). Springer, Berlin, 2001.
  • [4] Blazewicz, J., Dror, M. Mathematical programming formulations for machine scheduling: A survey. European Journal of Operational Research, 51: 283-300 (1991).
  • [5] Du, J., Leung, J.Y.T. Minimizing mean ow time with release time and deadline constraints. Journal of Algorithms, 14: 45-68 (1993).
  • [6] Du, J., Leung, J.Y.T., Young, G.H. Minimizing mean ow time with release time constraints. Theoretical Computer Science, 75: 347-355 (1990).
  • [7] Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G. Optimization and approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics, 5: 287-326 (1979).
  • [8] Horn, W.A. Some simple scheduling algorithms. Naval Research Logistics Quarterly, 21: 177-18 (1974).
  • [9] Smith, W.E. Various optimizers for single-stage production. Naval Research Logistics Quarterly, 3: 59-66 (1956).
  • [10] Sourd, F. Preemptive scheduling with two minimax criteria. Annals of Operations Research, 107: 303-319 (2001).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c036687d-d193-499e-8c7e-e724caab3088
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.