PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Interaction between stem damage, crown vitality and growth performance of European yew in Central–East Europe

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
As long-lived, slow-growing tree species, European yew (Taxus baccata L.) has considerable potential for dendrochronological use. The increasing probability of decline and the worsening of yew health status endanger the species diversity of temperate forests. In 2015–2017, we sampled adult yew populations with scattered occurrence in limestone beech forests (Fagetum dealpinum), in which yew trees exhibit the top growth performance. Altogether, 150 trees were sampled (294 cores) at four localities. By using the general linear model, we investigated the interactions between stem and crown status, sex and growth performance of yew trees. Based on the previous results and innovative measures of competition and canopy closure, we explored the promotion of silviculture care for female over the male trees and formulated exact release cutting rules. The results demonstrate divergent growth trends between male and female trees and the pronounced negative effects of crown and stem damage on growth performance of European yew. Expected decreases in radial growth of damaged female trees in comparison with male ones is less confirmed. Despite this, making silvicultural treatments for females as a priority is recommendable. Our findings can improve the effectiveness of forest management and restoration activities in European temperate forests, where yew adults are threatened by the higher degree of shading and herbivory pressure.
Wydawca
Czasopismo
Rocznik
Strony
35--53
Opis fizyczny
Bibliogr. 68 poz., rys., tab.
Twórcy
  • Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 960 53 Zvolen, Slovak Republic
autor
  • Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 960 53 Zvolen, Slovak Republic
autor
  • Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 960 53 Zvolen, Slovak Republic
  • Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 960 53 Zvolen, Slovak Republic
  • Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 960 53 Zvolen, Slovak Republic
Bibliografia
  • 1. Ammer C, 1996. Impact of ungulates on structure and dynamics of natural regeneration of mixed mountain forests in the Bavarian Alps. Forest Ecology and Management 88: 43–53.
  • 2. Bigler C and Bugmann H, 2004. Predicting the time of tree death using dendrochronological data. Ecological Applications 14(3): 902–914, DOI: 10.1890/03-5011.
  • 3. Bigler C, Gričar J, Bugmann H and Čufar K, 2004. Growth patterns as indicators of impending tree death in silver fir. Forest Ecology and Management 199: 183–190, DOI: 10.1016/j.foreco.2004.04.019.
  • 4. Bošel’a M, Sedmák R, Sedmáková D, Marušák R and Kulla L, 2014. Temporal shifts of climate-growth relationships of Norway spruce as an indicator of health decline in the Beskids, Slovakia. Forest Ecology and Management 325: 108–117, DOI: 10.1016/j.foreco.2014.03.055.
  • 5. Brzeziecki B and Kienast F, 1994. Classifying the life-history strategies of trees on the basis of the Grimian model. Forest Ecology and Management 69: 167–187, DOI: 10.1016/0378- 1127(94)90227-5.
  • 6. Buras A, Spyt B, Janecka K and Kaczka R, 2018. Divergent growth of Norway spruce on Babia Góra Mountain in the western Carpathians. Dendrochronologia 50: 33–43, DOI: 10.1016/j. dendro.2018.04.005
  • 7. Calev A, Zoref C, Tzukerman M and Moshe Y, 2016. High-intensity thinning treatments in mature Pinus halepensis plantations experiencing prolonged drought. European Journal of Forest Research 135(3): 551–563, DOI: 10.1007/s10342- 016-0954-y.
  • 8. Canham, CD, Coates KD, Bartemucci P and Quaglia S, 1999. Measurement and modelling of spatially-explicit variation in light transmission through interior cedar-hemlock forests of British Columbia. Canadian Journal of Forest Research 29: 1775–1783.
  • 9. Cedro A and Iszkuło G, 2011. Do females differ from males of European yew (Taxus baccta L.) in dendrochronological analysis? Tree-Ring Research 67(1): 3–11.
  • 10. Cornes RC, van der Schrier G, van den Besselaar EJM and Jones PD, 2018. An ensemble version of the E-OBS temperature and precipitation datasets. Journal of Geophysical Research: Atmospheres 123: 9391–9409, DOI:10.1029/2017JD028200.
  • 11. DeSoto L, Olano JM and Rozas V, 2016. Secondary growth and carbohydrate storage patterns differ between sexes in Juniperus thurifera. Frontiers in Plant Science 7: 1–12, DOI: 10.3389/ fpls.2016.00723.
  • 12. Dhar A, Ruprecht H and Vacik H, 2008. Population viability risk management (PVRM) for in situ management of endangered tree species - A case study on a Taxus baccata L. population. Forest Ecology and Management 255: 2835–2845, DOI: 10.1016/j.foreco.2008.01.059.
  • 13. Dobbertin M, 2005. Tree growth as indicator of tree vitality and of tree reaction to environmental stress: A review. European Journal of Forest Research 124(4): 319–333, DOI: 10.1007/ s10342-005-0085-3.
  • 14. Dobbertin M, Wermelinger B, Bigler C, Bürgi M, Carron M, Forster B, Gimmi U and Rigling A, 2007. Linking increasing drought stress to Scots pine mortality and bark beetle infestations. The Scientific World Journal 7: 231–239, DOI: 10.1100/ tsw.2007.58.
  • 15. Dobrowolska D, Niemczyk M and Olszowska G, 2017. The Influence of stand structure on European yew Taxus baccata populations in its natural habitats in central Poland. Polish Journal of Ecology 65: 369–384, DOI: 10.3161/15052249PJE2017.65.3.005.
  • 16. Duncan RP, 1989. An evaluation of errors in tree age estimates based on increment cores in Kahikatea (Dacrycarpus Dacrydioides). New Zealand Natural Sciences 16: 31–37.
  • 17. Eilmann B, Dobbertin M and Rigling A, 2013. Growth response of Scots pine with different crown transparency status to drought release. Annals of Forest Science 70(7): 685–693, DOI: 10.1007/s13595-013-0310-z.
  • 18. Galvin S, Potito A and Hickey K, 2014. Evaluating the dendroclimatological potential of Taxus baccata (yew) in southwest Ireland. Dendrochronologia 32(2): 144–152, DOI: 10.1016/j. dendro.2014.03.004.
  • 19. Garbarino M, Weisberg PJ, Bagnara L and Urbinati C, 2015. Sexrelated spatial segregation along environmental gradients in the dioecious conifer, Taxus baccata. Forest Ecology and Management 358: 122–129, DOI: 10.1016/j.foreco.2015.09.009.
  • 20. Garcıa D, Zamora R, Hódar J, Gómez JM, Castro J and García D, ́ 2000. Yew (Taxus baccata L.) regeneration is facilitated by fleshy fruited-shrubs in Mediterranean environments. Biological Conservation 95(1): 31–38.
  • 21. Gill RMA, 1992. A Review of damage by mammals in north temperate forests: 1. Deer. Forestry 65(2): 145–169.
  • 22. Givinish TJ, 1980. Ecological constraints on the evolution of breeding systems in seed plants: dioecy and dispersal in gymnosperms. Evolution 34(5): 959–972. Holmes RL, 1986. Quality control of crossdating and measuring: A user’s manual for program COFECHA. In:
  • 23. Holmes RL, Adams RK and Fritts HC eds., Tree-ring chronologies of Western North America, California, Eastern Oregon and Northern Great Basin with procedures used in the chronology development work including user manuals for computer programs COFECHA and ARSTAN. Laboratory of Tree -Ring Research University of Arizona: Tucson, Arizona, US, 41–49, DOI: http://hdl.handle.net/10150/304672.
  • 24. Iszkuło G, Jasińska AK, Giertych MJ and Boratyński A, 2009. Do secondary sexual dimorphism and female intolerance to drought influence the sex ratio and extinction risk of Taxus baccata? Plant Ecology 200(2): 229–240, DOI: 10.1007/ s11258-008-9447-5
  • 25. Iszkulo G, Jasińska AK and Sobierajska K, 2011. Dendroecological differences between Taxus baccata males and females in comparison with monoecious abies alba. Dendrobiology 65: 55–61.
  • 26. Johann K, 1982. Der ҅A-Wert̕ ein objektiver Parameter zur Bestimmung der Freistellungsstärke von Zentralbäumen (The ‘A-value’-an objective parameter for the determination of release intensity of central trees). Deutscher Verband der Forstlichen Versuchsanstalten, Sektion Ertragskunde, Weibersbrunn: 146–158 (in German).
  • 27. Knops JMH, Koenig WD and Carmen WJ, 2007. Negative correlation does not imply a tradeoff between growth and reproduction in California oaks. Proceedings of the National Academy of Sciences 104(43): 16982–16985, DOI: 10.1073/ pnas.0704251104.
  • 28. Korpeľ Š, 1981. Das grösste Eibenvorkommen in Europa. (The largest yew occurrence in Europe). Allgemeine Forstzeitung 36: 9–10 (in German).
  • 29. Korpeľ Š, 1995. Význam tisu v lesných ekosystémoch Slovenska a možnosti zlepšenia jeho stavu. (The importance of European yew, Taxus baccata , in forest ecosystems of Slovakia and possibilities to improve its status). Slovak Environmental Agency, Banská Bystrica (in Slovak).
  • 30. Krol S, 1978. An outline of ecology. In: Bartkowiak S, Bialobok S, Bugala W, Czartoryski A, Hejnowicz A, Król S, Srodon A and Szaniawski RK eds., The Yew-Taxus baccata L. Department of the National Centre for Scientific and Technical, and Economics Information (for the Department of Agriculture and the National Science Foundation, Washington, DC), Warsaw: 65–86.
  • 31. Kruszelnicki J, 2001. Taxus baccata L. Cis pospolity. In: Kaźmierczakowa R and Zarzycki K eds., Polska Czerwona Ksiega Roślin. Paprotniki i rosliny kwiatowe. (Red Data Book of Plants. Pteridophytes and flowering plants). Instytut Ochrony Przyrody PAN, Krakow: 68–70 (in Polish).
  • 32. Kýpeťová M, 2018. Vplyv ekologických podmienok obnovy na zachovanie tisa obyčajného (Taxus baccata L.) vo vybraných lesoch. (Impact of ecological conditions of regeneration on maintenance of European yew (Taxus baccata L.) in selected forests). Dissertation. Zvolen. (in Slovak).
  • 33. Kýpeťová M, Walas Ł, Jaloviar P and Iszkuło G, 2018. Influence of herbivory pressure on the growth rate and needle morphology of Taxus baccata L. juveniles. Dendrobiology 79: 10–19, DOI: 10.12657/denbio.079.002.
  • 34. Leuschner C and Ellenberg H, 2017. Ecology of Central European Forests. Vegetation Ecology of Central Europe, Volume I. Springer International Publishing, DOI: 10.1007/978-3-319- 43042-3.
  • 35. Lieberman M, Lieberman D and Rodolfo P, 1989. Forests are not just Swiss cheese: Canopy stereogeometry of non-gaps in tropical forests. Ecology 70(3): 550–552.
  • 36. Linares JC, 2013. Shifting limiting factors for population dynamics and conservation status of the endangered English yew (Taxus baccata L., Taxaceae). Forest Ecology and Management 291: 119–127, DOI: 10.1016/j.foreco.2012.11.009.
  • 37. Martín-Benito D, Cherubini P, Del Río M and Cañellas I, 2008. Growth response to climate and drought in Pinus nigra Arn. trees of different crown classes. Trees - Structure and Function 22(3): 363–373, DOI: 10.1007/s00468-007-0191-6.
  • 38. Melvin TM and Briffa KR, 2008. A “signal-free” approach to dendroclimatic standardisation. Dendrochronologia 26(2): 71–86, DOI: 10.1016/j.dendro.2007.12.001.
  • 39. Mitchell MGE, Antos JA and Allen GA, 2004. Modules of reproduction in females of the dioecious shrub Oemleria cerasiformis. Canadian Journal of Botany-Revue Canadienne De Botanique 82(3): 393–400, DOI: 10.1139/b04-018.
  • 40. Mund M, Kutsch WL, Wirth C, Kahl T, Knohl A, Skomarkova M V. and Schulze ED, 2010. The influence of climate and fructification on the inter-annual variability of stem growth and net primary productivity in an old-growth, mixed beech forest. Tree Physiology 30(6): 689–704, DOI: 10.1093/treephys/tpq027.
  • 41. National Forest Centre in Zvolen, 2015. ForestPortal. WEB site: . Accessed 2019 June 14 (in Slovak).
  • 42. Nowacki GJ and Abrams MD, 1997. Radial-growth averaging criteria for reconstructing disturbance histories from presettlement-origin oaks. Ecological Monographs 67(2): 225–249, DOI: 10.2307/2963514.
  • 43. Obeso JR, 2002. The costs of reproduction in plants. New Phytologist 155: 321–348.
  • 44. Obeso JR, Alvarez-Santullano M and Retuerto R, 1998. Sex ratios, size distributions, and sexual dimorphism in the dioecious tree Ilex aquifolium (Aquifoliaceae). American Journal of Botany 85(11): 1602–1608, DOI: 10.2307/2446488.
  • 45. Paule L, Gomöry D and Longauer R, 1993. Present distribution and ecological conditions of the English yew (Taxus baccata L.) in Europe. International Yew Resources Conference: Yew (Taxus) Conservation Biology and Interactions: 189–196.
  • 46. Perrin PM and Mitchell FJG, 2013. Effects of shade on growth, biomass allocation and leaf morphology in European yew (Taxus baccata L.). European Journal of Forest Research 132(2): 211–218, DOI: 10.1007/s10342-012-0668-8.
  • 47. Pretzsch H, 2001. Modellierung des Waldwachstums. (Modeling of forest growth). Blackwell Wissenschafts-Verlag, Berlin, Wien (in German).
  • 48. Pretzsch H, 2009. Forest Dynamics, Growth and Yield. SpringerVerlag Berlin Heidelberg, DOI: 10.1007/978-3-540-88307-4.
  • 49. Purohit A, Maikhuri RK, Rao KS and Nautiyal S, 2001. Impact of bark removal on survival of Taxus baccata L. (Himalayan yew) in Nanda Devi Biosphere Reserve, Garhwal Himalaya, India. Current Science 81(5): 586–590.
  • 50. Robakowski P, Pers-Kamczyc E, Ratajczak E, Thomas PA, Ye Z-P, Rabska M and Iszkuło G, 2018. Photochemistry and antioxida tive capacity of female and male Taxus baccata L. acclimated to different nutritional environments. Frontiers in Plant Science 9: 1–13, DOI: 10.3389/fpls.2018.00742.
  • 51. Rozas V, DeSoto L and Olano JM, 2009. Sex-specific, age-dependent sensitivity of tree-ring growth to climate in the dioecious tree Juniperus thurifera. New Phytologist 182(3): 687–697, DOI: 10.1111/j.1469-8137.2009.02770.x.
  • 52. Ruprecht H, Dhar A, Aigner B, Oitzinger G, Klumpp R and Vacik H, 2010. Structural diversity of English yew (Taxus baccata L.) populations. European Journal of Forest Research 129(2): 189–198. DOI: 10.1007/s10342-009-0312-4.
  • 53. Sáenz-Romero C, Kremer A, Nagy L, Újvári-Jármay É, Ducousso A, Kóczán-Horváth A, Hansen J and Mátyás C, 2019. Common garden comparisons confirm inherited differences in sensitivity to climate change between forest tree species. PeerJ (January): e6213, DOI: 10.7717/peerj.6213.
  • 54. Saniga M, 2000. Štruktúra, produkčné a regeneračné procesy tisa obyčajného v štátnej prírodnej rezervácii Placno. (Structure, production and regeneration processes of English yew in the state nature reserve Plavno). Journal of Forest Science 46: 76–90 (in Slovak).
  • 55. Saniga M and Jaloviar P, 2005. Einfluss der Naturprozesse, waldbaulicher Massnahmen und Schutzmassnahmen auf die Erhaltung der Eibe im Naturreservat Pavelcovo, Slowakei . (The effect of natural processes, silvicultural and protective measures on the conservation of common yew in the Nature Reserve Pavelcovo, Slovakia). Schweiz. Zeitschrift fur Forstwesen: 487–495 (in German).
  • 56. Sedmáková D, Kýpeťová M, Saniga M, Pittner J, Vencurik J, Kucbel S and Jaloviar P, 2018. Deer game, a key factor affecting population of European yew in beech forests of the Velka Fatra Mts., Slovakia. Folia Oecologica 45(1): 1–7, DOI: 10.2478/foecol-2018-0001.
  • 57. Sedmáková D, Saniga M, Kucbel S, Pittner J, Kýpeťová M, Jaloviar P, Bugala M, Vencurik J and Lukáčik I, 2017. Irregular shelterwood cuttings promote viability of European yew population growing in a managed forest: A case study from the Starohorské Mountains, Slovakia. Forests 8(8): 289, DOI: 10.3390/f8080289.
  • 58. Seidling W, Ziche D and Beck W, 2012. Climate responses and interrelations of stem increment and crown transparency in Norway spruce, Scots pine, and common beech. Forest Ecology and Management 284: 196–204, DOI: 10.1016/j.foreco.2012.07.015.
  • 59. Sikström U, Jacobson S, Pettersson F and Weslien J, 2011. Crown transparency, tree mortality and stem growth of Pinus sylvestris, and colonisation of Tomicus piniperda after an outbreak of Gremmeniella abietina. Forest Ecology and Management 262: 2108–2119, DOI: 10.1016/j. foreco.2011.07.034.
  • 60. Suszka B, 1978. Generative and vegetative reproduction. In: Bartkowiak S, Bialobok S, Bugala W, Czartoryski A, Hejnowicz A, Król S, Srodon A and Szaniawski RK eds., The Yew – Taxus baccata L. Foreign Scientific Publications, Department of the National Center for Scientific and Technical, and Economic Information (for the Department of Agriculture and the National Science Foundation, Washington, DC), Warsaw: 87–102.
  • 61. Thomas PA and Polwart A, 2003. Biological Flora of the British Isles, no. 229. Taxus baccata L. Journal of Ecology 91(3): 489–524, DOI: 10.1046/j.1365-2745.2003.00783.x.
  • 62. Uzquiano P, Allué E, Antolín F, Burjachs F, Picornel L, Piqué R and Zapata L, 2015. All about yew: on the trail of Taxus baccata in southwest Europe by means of integrated palaeobotanical and archaeobotanical studies. Vegetation History and Archaeobotany 24(1): 229–247, DOI: 10.1007/s00334-014-0475-x.
  • 63. Vospernik S, 2006. Probability of bark stripping damage by red deer (Cervus elaphus) in Austria. Silva Fennica 40: 589–601.
  • 64. Watt A, 1926. Yew communities of the South Downs. Journal of Ecology 14: 282–316.
  • 65. Wilson P, Buonopane M and Allison TD, 1996. Reproductive biology of the monoecious clonal shrub Taxus canadensis. Bulletin of the Torrey Botanical Club 123(1): 7–15, DOI: 10.2307/2996301.
  • 66. Yamaguchi DK, 1991. A Simple method for cross-dating increment cores from living trees. Canadian Journal of Forest Research 21: 414–416.
  • 67. Zarnoch SJ, Bechtold WA and Stoke KW, 2004. Using crown condition variables as indicators of forest health. Canadian Journal of Forest Research 34(1966): 1057–1070.
  • 68. Zhang C, Zhao X, Gao L and von Gadow K, 2010. Gender-related distributions of Fraxinus mandshurica in secondary and oldgrowth forests. Acta Oecologica 36(1): 55–62, DOI: 10.1016/j. actao.2009.10.001.
Uwagi
„Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).”
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c034dcd3-1d1b-4104-9ec0-bffb72163f07
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.