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Defect Detection Using Deep Learning-Based YOLOv3 in Cross-Sectional Image  
of Additive Manufacturing

Deposition defects like porosity, crack and lack of fusion in additive manufacturing process is a major obstacle to commer-
cialization of the process. Thus, metallurgical microscopy analysis has been mainly conducted to optimize process conditions by 
detecting and investigating the defects. However, these defect detection methods indicate a deviation from the operator’s experience. 
In this study, artificial intelligence based YOLOv3 of object detection algorithm was applied to avoid the human dependency. The 
algorithm aims to automatically find and label the defects. To enable the aim, 80 training images and 20 verification images were 
prepared, and they were amplified into 640 training images and 160 verification images using augmentation algorithm of rotation, 
movement and scale down, randomly. To evaluate the performance of the algorithm, total loss was derived as the sum of localiza-
tion loss, confidence loss, and classification loss. In the training process, the total loss was 8.672 for the initial 100 sample images. 
However, the total loss was reduced to 5.841 after training with additional 800 images. For the verification of the proposed method, 
new defect images were input and then the mean Average Precision (mAP) in terms of precision and recall was 0.3795. Therefore, 
the detection performance with high accuracy can be applied to industry for avoiding human errors.
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1. Introduction

Additive manufacturing (AM) is drawing attention as a key 
part of the fourth industrial revolution, presenting a new para-
digm in production technology. Unlike conventional subtractive 
manufacturing, materials are laminated in line by line and layer 
upon layer, and by the topology optimization it produces not 
only complex shapes but also excellent rigid parts. AM can also 
help rapid production and automation, as well as reduce resource 
efficiency and weight. However, to apply AM parts to structures 
subject to high loads such as aircraft or automobiles, a process 
is needed to ensure integrity of internal defects. Thus, the met-
allurgical microscopy analysis has been primarily conducted 
to optimize process conditions in to detect and investigate the 
defects. However, these defect detection methods show varia-
tions by the operator’s experience.

Many studies have been conducted to reduce anomalies and 
automatically overcome the limitations of product integrity by 
applying deep learning to AM [1-8]. 

Kwon et al. [1] used the Artificial Neural Network (ANN) 
to find the porosity and crack in real-time Selective Laser Melt-
ing (SLM) process. The light emitted from the melting pool was 
understood that microstructures of the part were influenced by 
the laser power. Therefore, the intensity was measured as the 
number of pixels with using a high-speed camera and used for 
input data of algorithm training. Consequently, defects were 
precisely classified through real-time melting pool monitoring.

Scime et al. [2-5] researched the Laser-Powder Bed Fusion 
(L-PBF) process in terms of melt pool monitoring and anomaly 
classification with using the high-speed camera and machine 
learning algorithm. The Multi Scale Convolutional Neural 
Network (MsCNN), Back of Words (BoW), and Convolutional 
Neural Network (CNN) algorithms were trained using the ex-
perimental image data. Anomalies were more accurately clas-
sified by the MsCNN algorithm which can enlarge the defect 
area than others.

Khanzadeh et al. [6-8] detected the anomaly signatures 
from the AM process monitoring. Especially, a real-time porosity 
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prediction method was developed using morphological charac-
teristics and thermal images of the melt pool. Six algorithms 
were compared from two perspectives. K-Nearest Neighbor 
(KNN) showed a highest accuracy classification performance 
of 98.44%. And Decision Tree (DT) had a 0.03% lower prob-
ability of mistaking the normal melt pool as pores. Supervised 
learning combined with morphological models showed about 
250% better performance in predicting abnormal molten pool 
than general supervised learning.

Previous studies have focused on the study of CNN-based 
classification algorithms to find the label of defects in multi 
classes. On the other hand, real-time object detection algorithms 
in self-driving cars have been attracting much attention, lately. 
Therefore, a study was conducted to detect metal defects us-
ing YOLOv3 [9], a kind of object detection algorithm. A code 
capable of fast and high-accuracy object detection with only 
9 lines was used from ImageAI [10] of the Python library. 
In preparation, training data was created by adding annotations 
of bounding boxes and labels to defect images, and the number 
of data was augmented to maximize the effect of learning. After 
data setup, the training progress of the YOLOv3 was evaluated 
as the total loss. And the detection evaluation was performed 
as the mean Average Precision (mAP) from the point of view 
of precision and recall. Finally, ability was confirmed whether 
the trained YOLOv3 can accurately find and label defects by 
inputting new images.

2. Data preparation

While classification algorithms train the division of the 
image itself, object detection is a method of training the recogni-
tion of specific objects within the image. Therefore, the training 
data of object detection should provide annotation information 
including the coordinates and classes along with the images. 
This chapter describes the process of preparing training data of 
defects occurring in the metal AM process. Firstly, 100 images 
which have defects such as porosity, crack, and lack of fusion 
of alone or multiple or complex form were prepared from web 
crawling. Due to the characteristic of pixel-by-pixel training, 
images were cropped to 500×500 pixels to reduce the training 
time and hardware resource usage. And annotations were added to 
the entire image using the graphical image tool [11] as shown in 
Fig. 1(a). Because the annotation process determines the detection 
performance of the algorithm, a cross-sectional analysis expert 
was needed to accurately perform bounding box and labeling for 
defects. The training data was made as a pair of image file and 
annotation file of Pascal VOC form from the ImageNet [12].

To train an object detection algorithm based on image, 
a large number of data is required. For this, an image augmen-
tation that creates a new image by slightly transforming (i.e. 
translation, rotation, resize, cropping, padding, etc.) the original 
image from imgaug [13] of the Python library was applied. Prior 
to augmentation, reduced the image and black padding was added 

(a) (b) 

Fig. 1. Training image for defect detection with annotations: (a) Raw data, (b) After data augmentation

TABLE 1

The number of data set and training information

Training
data

Validation 
data Epoch Computing 

time (h)
Class

Porosity Crack Lack of fusion
Raw image 80 20 50 22 159 96 36

After augmentation 640 160 20 96 1272 760 288
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to prevent training errors due to the protrusion of the bounding 
box. Consequently, 80 training images and 20 validation images 
were amplified to 640 training images and 160 validation images, 
as shown in Fig. 1(b) and Table 1.

3. Training and validation

Other object detection algorithms improve computational 
efficiency by applying selective search or region proposal net-
work (RPN) based on the sliding window method for finding 
objects. While YOLOv3 divides the entire image into relatively 
large cell grid and detects objects at once, enabling very fast 
computing. Thus the total loss representing the training progress 
calculate the sum of the localization loss for location accuracy, 
the confidence loss of the existence in the cell, and the classifica-
tion loss of the classification accuracy of the objects.

In this study, pre-trained YOLOv3 was used as a feature 
extractor to improve learning efficiency, and classifier was 
trained with the custom data (from Ch. 2). The computing was 
performed using i7-6700K 4.00GHz (Intel) CPU and GeForce 
GTX 1050Ti (NVIDIA) graphic card. The progress of the total 
loss in the training process is shown in Fig. 2(a). The training 
starts with a relatively low loss in 640 images, because 1 epoch 
of many images determines the weight and bias with a large 
amount of learning than less images. 640 images went down 
to a total loss of 8.460(6 epochs, 28.8 hours) which was lower 
than 8.612(50 epochs, 22 hours) of the training finish of small 
amount of images. Consequently, the learning of many images 
by the augmentation was reduced to a total loss of 5.915 in 
96 hours, confirming relatively excellent detection performance.

The validation of the trained model was performed accord-
ing to the epoch. First, the average precision (AP) for each class 
of porosity, crack, and lack of fusion was derived for each epoch, 
and the average AP for each class was mAP. AP is the area of the 
curve for two things: recall (x-axis), which evaluates the number 
of objects found among the ground truth and precision(y-axis), 
which evaluate the number of ground truth among the number of 
objects found. And the intersection over union (IoU) representing 
the overlap between the ground truth box and the prediction box 
was set to 0.5. Therefore, the derived mAP graph is shown in 
Fig. 2(b). In the last epoch, AP of 640 images were 0.3840 and 
higher than 0.2839 in the training of 80 images. In a different 
way, the detection performance was evaluated using a higher 
mAP model before the last epoch, but it had poor performance 
because the low total loss. In order to reduce eccentric training 
and obtain a stable mAP, further research was needed by increas-
ing the epochs.

4. Defect detection test

The performance of defect detection is determined by how 
accurate results are output when a new image is input to the 
trained model. So, the output result according to the amount 

of training data and the input image pixel size was studied by 
inputting a complex defect image as shown in Fig. 3. The higher 
detection confidence for each defect was confirmed in Fig. 3(b) 
when the number of training data was large. However, regardless 
of the amount of training data, the superposition error (Red ar-
row) is shown in Fig. 3(a) and (b). This problem was solved by 
increasing the number of pixel data for defect analysis from the 
extending the resolution of the input image (Fig. 3(c)). Alterna-
tively, object with low confidence can be removed by adjusting 
the factor of minimum percentage probability or non-maximal 
suppression threshold. In particular, this test showed the detec-
tion performance of not misrecognizing the longitudinal hairline 
existing by polishing as a crack. And the defect detection took 
14 seconds regardless of the image size and amount of training 
each Fig. 3(a), (b), (c).

The detection performance was evaluated in more defected 
image as shown in Fig. 4. Obviously, a number of undetected 
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(b) Validation progress by mAP 

 
Fig. 2. Training and validation process: (a) Training progress by Total 
loss, (b) Validation progress by mAP
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errors (Green arrow) and also superposition error (Red arrow) 
were more found in high total loss and low mAP model as 
shown in Fig. 4(a). On the other hand, the model after training 

to 20 epochs succeeded in detecting most defect (Fig. 4(b)). 
Nevertheless, undetected errors were confirmed, and in par-
ticular, it showed a vulnerability to the detection of crack and 
lack of fusion. The trained YOLOv3 has tendency to be partial 
in detecting caused by training of more than 1.6 times of the 
porosity class (Table 1) [15]. It is necessary to derive improved 
results by preparing learning data that included unbiased class 
in the next study. The excellent performance of not erroneously 
detecting the material phase of the base material as crack and 
porosity was confirmed. The defect detection took 14 seconds 
regardless of the amount of training each Fig. 4(a), (b). Com-
prehensively, since defects can be precisely detected at a fast 
inspection speed and coordinates in pixel units can be output, 
automated post-processing such as precise measurement or 
defect recovery are possible.

 
*Red arrow (     ): superposition error

(a) 

(b) 

(c) 

Fig. 3. Defect detection test according to the amount of training: (a) 80 
images training model (355×267 pixel), (b) 640 images training model 
(355×267 pixel), (c) 640 images training model (688×500 pixel)

 

*Red arrow (     ): superposition error
*Green arrow (     ): undetected error

(a) 

(b) 

Fig. 4. Defect detection test according to the training epochs (640 im-
ages training and 688×500 pixel) [14]: (a) 2 epochs in 9 hours (total 
loss = 13.361, mAP = 0.3433, (b) 20 epochs in 96 hours (total loss = 
5.915, mAP = 0.3840)
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5. Conclusions

In this study, latest object detection algorithm of the 
YOLOv3 model was evaluated whether AM defects can be 
detected. 100 data sets were prepared by inputting the bounding 
box and label to the defect of the training data, and amplified 
into 640 pair of training data and 160 pair of validation data by 
the augmentation algorithm. The data sets were trained by 20 
epochs for 96 hours, resulting in a total loss of 5.915 and a mAP 
of 0.2839 in validation step of 160 data sets. As a result, the 
greater the training amount, epochs, and the size of the analyzed 
image, the more accurate defect detection performance was con-
firmed. However, due to the defect class biased in porosity, the 
detection performance of lack of fusion and crack was relatively 
degraded. Nevertheless, automated post-processing is possible 
because the pixel-unit coordinates of the defect were derived. 
Consequently, the defect detection took constantly 14 seconds 
regardless of the image size and amount of training. In future 
research, we will prepare a lot of training data considering 
unbiased class in order to secure better detection performance. 
And the sufficient hardware or cloud computing service will be 
used to learn more epochs. Therefore, the result of this study 
are expected to apply object detection algorithm to industry for 
avoiding human errors.
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