Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
The northern Arabian Sea, a vital ecosystem that sustains a significant population through its fisheries is increasingly threatened by climate change, overharvest, and coastal pollution. To evaluate the combined effects of these pressures on fishery health, microplankton, fish bycatch, and coastal environment data were examined between 2019 and 2023 from key hotspots. Using the time-cumulated indicator (TCI) and efficiency cumulated indicator (ECI) approaches, we aimed to determine broader spectrum of energy flow in the ecosystem. The findings revealed a delicate equilibrium in the ecosystem. Although average temperatures remained stable, variations in rainfall patterns suggested potential changes in salinity and dissolved oxygen levels, signaling subtle climate change influences. Biological indicators highlighted dynamic shifts: species diversity fluctuated, suggesting community restructuring, while increased evenness implied potential ecological stabilization. The production and biomass (P/B) ratio was higher in 2019, reflecting faster biomass production compared to the slower rate observed in 2023. This instability may be attributed to environmental changes, altered species composition, and a steady increase in fishing pressure. Notably, consistent fish catches amidst relatively stable species diversity suggest complex population dynamics. In terms of energy flow and transformation, a significant rise in TCI, suggests accelerated energy transfer, likely driven by a decline in predator population. Additionally, the instability in Residence Time (RT) underscores intricate food web interactions. Our findings highlight the delicate equilibrium of the northern Arabian Sea, as revealed by the overall data and assessment. Understanding these intricate dynamics is crucial for developing effective conservation strategies and promoting sustainable fishing practices.
Czasopismo
Rocznik
Tom
Strony
Art. no. 67110
Opis fizyczny
Bibliogr. 52 poz., rys., tab., wykr.
Twórcy
autor
- Centre of Excellence in Marine Biology, University of Karachi, 75270, Sindh, Pakistan
autor
- Centre of Excellence in Marine Biology, University of Karachi, 75270, Sindh, Pakistan
autor
- Centre of Excellence in Marine Biology, University of Karachi, 75270, Sindh, Pakistan
Bibliografia
- 1. Aberle, N., Bauer, B., Lewandowska, A., Gaedke, U., Sommer, U., 2012. Warming induces shifts in microzooplankton phenology and reduces time-lags between phytoplankton and protozoan production. Mar. Biol. 159, 2441-2453. https://doi.org/10.1007/s00227-012-1947-0
- 2. Asha Devi, C. R., Mondal, J., Vishnu, N.N.S., Sherin, C. K., Albin, K.J., Anandavelu, I., Gupta, G.V.M., 2024. Factors regulating proliferation and co-occurrence of loricate ciliates in the microzooplankton community from the eastern Arabian Sea. Aquat. Sci. 86(2), 31. https://doi.org/10.1007/s00027-024-01047-0
- 3. Benoit, E., Rochet, M.J., 2004. A continuous model of biomass size spectra governed by predation and the effects of fishing on them. J. Theor. Biol. 226(1), 9-21. https://doi.org/10.1016/S0022-5193(03)00290-X
- 4. Britten, G.L., Dowd, M., Worm, B., 2016. Changing recruitment capacity in global fish stocks. P. Natl. Acad. Sci- Biol. 113(1), 134-139. https://doi.org/10.1073/pnas.1504709112
- 5. Carpenter, K.E., Niem, V.H., 2001. FAO species identification guide for fishery purposes. The living marine resources of the Western Central Pacific Vol. 5. Bony fish Pt. 3, (Menidae to Pomacentridae). FAO Library.
- 6. Chen, B., Landry, M. R., Huang, B., Liu, H., 2012. Does warming enhance the effect of microzooplankton grazing on marine phytoplankton in the ocean? Limnol. Oceanogr. 57(2), 519-526. https://doi.org/10.4319/lo.2012.57.2.0519
- 7. Cheung, W.W., Lam, V.W., Sarmiento, J.L., Kearney, K., Watson, R.E.G., Zeller, D., Pauly, D., 2010. Large scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Global Change Biol. 16(1), 24-35. https://doi.org/10.1111/j.1365-2486.2009.01995.x
- 8. Christensen, V., Coll, M., Piroddi, C., Steenbeek, J., Buszowski, J., Pauly, D., 2014. A century of fish biomass decline in the ocean. Mar. Ecol.Prog.Ser. 512, 155-66. https://doi.org/10.3354/meps10946
- 9. Cury, P.M., Shannon, L.J., Roux, J.P., Daskalov, G.M., Jarre, A., Moloney, C.L., Pauly, D., 2005. Trophodynamic indicators for an ecosystem approach to fisheries. ICES J. Mar. Sci. 62(3), 430-442. https://doi.org/10.1016/j.icesjms.2004.12.006
- 10. D’Alelio, D., Libralato, S., Wyatt, T., Ribera d’Alcalà, M., 2016. Ecological-network models link diversity, structure and function in the plankton food-web. Sci. Rep. UK. 6(1), 21806. https://doi.org/10.1038/srep21806
- 11. Dafner, E.V., Wangersky, P.J., 2002. A brief overview of modern directions in marine DOC studies. Part II – Recent progress in marine DOC studies. J. Environ. Monit. 4(1), 55-69. https://doi.org/10.1039/B107279J
- 12. Eduardo, L.N., Mincarone, M.M., Sutton, T., Bertrand, A., 2024. Deep-Pelagic Fishes Are Anything But Similar: A Global Synthesis. Eco. Lett. 27(9), e14510. https://doi.org/10.1111/ele.14510
- 13. Fanelli, E., Da Ros, Z., Menicucci, S., Malavolti, S., Biagiotti, I., Canduci, G., Leonori, I., 2023. The pelagic food web of the Western Adriatic Sea: a focus on the role of small pelagics. Sci. Rep. UK. 13(1), 14554. https://doi.org/10.1038/s41598-023-40665-w
- 14. Farooq, N., Qamar, N. Panhwar, S.K., 2017. Characterization of feeding habits and prey diversity, diet overlap of two sympatric species the bronze sea catfish, Netuma bilineata and blacktip sea catfish, Plicofollis dussumieri from the northern Arabian Sea. J. Appl. Ichthyol. 33(4), 709-719. https://doi.org/10.1111/jai.13377
- 15. Fischer, W., Sousa, I., Silva, C., De Freitas, A., Poutiers, J.M., Schneider, W., Borges, T.C., Feral, J.P., Massinga, A., 1990. Fichas FAO de identificaçao de espécies para actividades de pesca. Guia de campo das espéciescomerciaismarinhas e de águassalobras de Moçambique. Publ. collabort. Inst. Investig. Pesq. Moçambique, Proj. PNUD/FAO MOZ/86/030 NORAD. Roma, FAO.
- 16. Froese, R., Pauly, D., 2024. FishBase. World Wide Web electronic publication. www.fishbase.org (accessed 01/2024).
- 17. Garrison, D.L., Gowing, M.M., Hughes, M.P., Campbell, L., Caron, D.A., Dennett, M.R., Smith, D.C., 2000. Microbial food web structure in the Arabian Sea: a US JGOFS study. Deep-Sea Res. Pt. II 47(7–8), 1387-1422. https://doi.org/10.1016/S0967-0645(99)00148-4
- 18. Gascuel, D., Morissette, L., Palomares, M.L.D., Christensen, V., 2008. Trophic flow kinetics in marine ecosystems: toward a theoretical approach to ecosystem functioning. Ecol. Model. 217(1-2), 33-47. https://doi.org/10.1016/j.ecolmodel.2008.05.012
- 19. Gibbons M.J., Richardson A.J., 2009. Patterns of jellyfish abundance in the North Atlantic. Hydrobiologia. 616, 51-65. https://doi.org/10.1007/978-1-4020-9749-2_4
- 20. Gleiber, M.R., Hardy, N.A., Roote, Z., Krug-MacLeod, A.M., Morganson, C.J., Tandy, Z., Green, SJ., 2024. The Pelagic Species Trait Database, an open data resource to support trait-based ocean research. Sci. Data 11(1), 2. https://doi.org/10.1038/s41597-023-02689-9
- 21. He, Q., Silliman, B.R., 2019. Climate change, human impacts, and coastal ecosystems in the Anthropocene. Curr. Biol. 29(19), R1021-R1035. https://doi.org/10.1016/j.cub.2019.08.042
- 22. Hetherington, E.D., Close, H.G., Haddock, S.H., Damian Serrano, A., Dunn, C.W., Wallsgrove, N.J., Choy, C.A., 2024. Vertical trophic structure and niche partitioning of gelatinous predators in a pelagic food web: Insights from stable isotopes of siphonophores. Limnol. Oceanogr. 69(4), 902-919. https://doi.org/10.1002/lno.12536
- 23. Jan, M., Panhwar, S.K., Zafar, F.H.S., 2022. Ecosystem based approach to delineate coastal degradation of Hawks bay, Karachi, Pakistan. Chemosphere 301, p.134648. https://doi.org/10.1016/j.chemosphere.2022.134648
- 24. Jennings, S., Brander, K., 2010. Predicting the effects of climate change on marine communities and the consequences for fisheries. J. Marine Syst. 79(3–4), 418-426. https://doi.org/10.1016/j.jmarsys.2008.12.016
- 25. Jennings, S., Collingridge, K., 2015. Predicting consumer biomass, size-structure, production, catch potential, responses to fishing and associated uncertainties in the world’s marine ecosystems. Plos ONE, 10(7), e0133794. https://doi.org/10.1371/journal.pone.0133794
- 26. Jochum, M., Schneider, F.D., Crowe, T.P., Brose, U., O’Gorman, E.J., 2012. Climate-induced changes in bottom-up and top-down processes independently alter a marine ecosystem. Philos. T. Roy. Soc. B. 367(1605), 2962-2970. https://doi.org/10.1098/rstb.2012.0237
- 27. Kachhi, K.K., Akhter, N., Panhwar, S.K., Kashani, I., 2024. Escalating Trends of Hydrogen Sulphide (H2S) and its Role in Structuring Pakistan Coastal Zones Barren. Pollution 10(1), 256-264. https://doi.org/10.22059/poll.2023.364144.2036
- 28. Kamiyama, T., 2015. Planktonic ciliates: diverse ecological function in seawater. Marine Protists: Diversity and Dynamics, 277-309. https://doi.org/10.1007/978-4-431-55130-0_11
- 29. Kashani, I., Panhwar, S.K., 2023. Intraspecific Population Variability in Goldstripe Ponyfish, Karalla daura Sampled along the Pakistan Coast Based on Geo-Morphometric Approach. Pak. J. Zool. 55, 1585-1591.
- 30. Law, R., Planhttps, M.J., James, A., Blanchard, J.L., 2009. Size-spectra dynamics from stochastic predation and growth of individuals. Ecology 90(3), 802-811. https://doi.org/10.1890/07-1900.1
- 31. Lefcheck, J.S., Hughes, B.B., Johnson, A. J., Pfirrmann, B.W., Rasher, D.B., Smyth, A.R., Orth, R.J., 2019. Are coastal habitats important nurseries? A meta analysis. Conserv. Lett. 12(4), e12645. https://doi.org/10.1111/conl.12645
- 32. Li, H., Wang, C., Zhao, L., Dong, Y., Zhao, Y., Zhang, W., 2023. Variability of tintinnid ciliate communities with water masses in the western Pacific Ocean. J. Plankton Res. 45(3), 509-522. https://doi.org/10.1093/plankt/fbad011
- 33. Lin, M., Turvey, S.T., Han, C., Huang, X., Mazaris, A.D., Liu,M., Li, S., 2022. Functional extinction of dugongs in China. Roy. Soc. Open. Sci. 9(8), 211994. https://doi.org/10.1098/rsos.211994
- 34. Maureaud, A., Gascuel, D., Colléter, M., Palomares, M.L., Du Pontavice, H., Pauly, D., Cheung, W.W., 2017. Global change in the trophic functioning of marine food webs. PlosONE 12(8), e0182826. https://doi.org/10.1371/journal.pone.0182826
- 35. McKenzie, D., Geffroy, B., Farrell, A.P., 2021. Effects of global warming on fishes and fisheries. J. Fish Biol. 98(6), 1489-1492. https://doi.org/10.1111/jfb.14762
- 36. Morris, B.E., Henneberger, R., Huber, H., Moissl-Eichinger, C., 2013. Microbial syntrophy: interaction for the common good. FEMS Microbiol. Rev. 37(3), 384-406. https://doi.org/10.1111/1574-6976.12019
- 37. Moustaka-Gouni, M., Kormas, K.A., Scotti, M., Vardaka, E., Sommer, U., 2016. Warming and acidification effects on planktonic heterotrophic pico-and nanoflagellates in a mesocosm experiment. Protist, 167(4), 389-410. https://doi.org/10.1016/j.protis.2016.06.004
- 38. Olsen, E.M., Heino, M., Lilly, G.R., Morgan, M.J., Brattey, J., Ernande, B., Dieckmann, U., 2004. Maturation trends indicative of rapid evolution preceded the collapse of northern cod. Nature 428(6986), 932-935. https://doi.org/10.1038/nature02430
- 39. Panhwar, S.K., Mairaj, M., 2022. An assessment of phytoplankton diversity in relation to environmental variables in the Indus river estuary, Sindh, Pakistan. Pak. J. Bot. 54(4). http://dx.doi.org/10.30848/PJB2022-4(31)
- 40. Perry, R.I., Cury, P., Brander, K., Jennings, S., Möllmann, C., Planque, B., 2010. Sensitivity of marine systems to climate and fishing: concepts, issues and management responses. J. Marine Syst. 79(3–4), 427-435. https://doi.org/10.1016/j.jmarsys.2008.12.017
- 41. Peter, K.H., Sommer, U., 2012. Phytoplankton cell size: intraand interspecific effects of warming and grazing. PlosONE 7(11), e49632. https://doi.org/10.1371/journal.pone.0049632
- 42. Psomadakis P.N., 2015. Field identification guide to the living marine resources of Pakistan. Roma, FAO. Rall, B.C., Brose, U., Hartvig, M., Kalinkat, G., Schwarzmüller, F., Vucic-Pestic, O., Petchey, O.L., 2012. Universal temperature and body-mass scaling of feeding rates. Philos. T. Roy. Soc. B. 367(1605), 2923-2934. https://doi.org/10.1098/rstb.2012.0242
- 43. Reiss, J., Bridle, J.R., Montoya, J.M., Woodward, G., 2009. Emerging horizons in biodiversity and ecosystem functioning research. Trends Eco. Evol. 24(9), 505-514. https://doi.org/10.1016/j.tree.2009.03.018
- 44. Shao, Q., Sun, D., Fang, C., Feng, Y., Wang, C., 2023. Microbial food webs share similar biogeographic patterns and driving mechanisms with depths in oligotrophic tropical western Pacific Ocean. Front. Microbiol. 14, 1098264. https://doi.org/10.3389/fmicb.2023.1098264
- 45. Shi, Y., Wang, J., Zuo, T., Shan, X., Jin, X., Sun, J., Pakhomov, E.A., 2020. Seasonal changes in zooplankton community structure and distribution pattern in the Yellow Sea, China. Front. Mar. Sci. 7, 391. https://doi.org/10.3389/fmars.2020.00391
- 46. Sievers, M., Brown, C.J., Tulloch, V.J., Pearson, R.M., Haig, J. A., Turschwell, M.P., Connolly, R.M., 2019. The role of vegetated coastal wetlands for marine megafauna conservation. Trends Eco. Evol. 34(9), 807-817. https://doi.org/10.1016/j.tree.2019.04.004
- 47. Simpson, S.D., Jennings, S., Johnson, M.P., Blanchard, J.L., Schön, P.J., Sims, D.W., Genner, M.J., 2011. Continental shelf-wide response of a fish assemblage to rapid warming of the sea. Curr. Biol. 21(18), 1565-1570. https://doi.org/10.1016/j.cub.2011.08.016
- 48. Stawiarski, B., Buitenhuis, E.T., Le Quéré, C., 2016. The physiological response of picophytoplankton to temperaturę and its model representation. Front. Mar. Sci. 3, 164. https://doi.org/10.3389/fmars.2016.00164
- 49. Tremblay-Boyer, L., Gascuel, D., Watson, R., Christensen, V., Pauly, D., 2021. Modelling the effects of fishing on the biomass of the world’s oceans from 1950 to 2006. Mar. Ecol. Prog. Ser. 442, 169-185. https://doi.org/10.3354/meps09375
- 50. Trombetta, T., Vidussi, F., Roques, C., Scotti, M., Mostajir, B., 2020. Marine microbial food web networks during phytoplankton bloom and non-bloom periods: Warming favors smaller organism interactions and intensifies trophic cascade. Front. Microbiol. 11, 502336. https://doi.org/10.3389/fmicb.2020.502336
- 51. Vallivattathillam, P., Lachkar, Z., Lévy, M., 2023. Shrinking of the Arabian Sea oxygen minimum zone with climate change projected with a downscaled model. Front. Mar. Sci. 10, 1123739. https://doi.org/10.3389/fmars.2023.1123739
- 52. Vergés, A., Steinberg, P.D., Hay, M.E., Poore, A.G., Campbell, A.H., Ballesteros, E., Wilson, S.K., 2014. The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. P. Roy. Soc. B-Biol.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c0331546-3035-4f8c-b901-b0cfbbbf5782
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.