PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stability analysis for discrete-time fractional-order LTI state-space systems. Part II: New stability criterion for FD-based systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a series of new results on the asymptotic stability of discrete-time fractional difference (FD) state space systems and their finite-memory approximations called finite FD (FFD) and normalized FFD (NFFD) systems. In Part I of the paper, new necessary and sufficient stability conditions have been given in a unified form for FD, FFD and NFFD-based systems. Part II offers a new, simple, ultimate stability criterion for FD-based systems. This gives rise to the introduction of new definitions of the so-called f-poles and f-zeros for FD-based systems, which are used in the closed-loop stability analysis for FD-based systems and, approximately, for FFD/NFFD-based ones.
Rocznik
Strony
363--370
Opis fizyczny
Bibliogr. 15 poz., rys., wykr.
Twórcy
  • Institute of Control and Computer Engineering, Opole University of Technology, 31 Sosnkowskiego St., 45-272 Opole, Poland
  • Institute of Control and Computer Engineering, Opole University of Technology, 31 Sosnkowskiego St., 45-272 Opole, Poland
Bibliografia
  • [1] M. Busłowicz, “Robust stability of positive discrete-time linear systems of fractional order”, Bull. Pol. Ac.: Tech. 58 (4), 567-572 (2010).
  • [2] M. Busłowicz and T. Kaczorek, “Simple conditions for practical stability of positive fractional discrete-time linear systems”, Int. J. Applied Mathematics and Computer Science 19 (2), 263-269 (2009).
  • [3] T. Kaczorek, “Practical stability of positive fractional discretetime linear systems”, Bull. Pol. Ac.: Tech. 56 (4), 313-317 (2008).
  • [4] T. Kaczorek, “New stability tests of positive standard and fractional linear systems”, Circuits and Systems, 2 (4), 261-268 (2011).
  • [5] T. Kaczorek, Selected Problems of Fractional Systems Theory, Springer-Verlag, Berlin, 2011.
  • [6] S. Guermah, S. Djennoune, and M. Bettayeb, “A new approach for stability analysis of linear discrete-time fractional-order systems”, in New Trends in Nanotechnology and Fractional CalculusApplications, eds. D. Baleanu, Z.B. G¨uvenc,, and J.A.T. Machado, pp. 151-162, Springer, Dordrecht, 2010.
  • [7] S.B. Stojanovic and D.L. Debeljkovic, “Simple stability conditions of linear discrete time systems with multiple delay”, Serbian J. Electrical Engineering 7 (1), 69-79 (2010).
  • [8] D. Matignon, “Stability results for fractional differential equations with applications to control processing”, ComputationalEngineering in Systems Applications 2, 963-968 (1996).
  • [9] D. Matignon, “Stability properties for generalized fractional differential systems”, ESAIM: Proc. 5, 145-158 (1998).
  • [10] R. Stanisławski and K.J. Latawiec, “Stability analysis for discrete-time fractional-order LTI state-space systems. Part I: New necessary and sufficient conditions for the asymptotic stability”, Bull. Pol. Ac.: Tech. 61 (2), 353-361 (2013).
  • [11] A. Dzieliński and D. Sierociuk, “Stability of discrete fractional order state-space systems”, J. Vibration and Control 14 (9-10), 1543-1556 (2008).
  • [12] C. Monje, Y. Chen, B. Vinagre, D. Xue, and V. Feliu, Fractional-order Systems and Controls, Springer-Verlag, London, 2010.
  • [13] R. Stanisławski and K.J. Latawiec, “Normalized finite fractional differences - the computational and accuracy breakthroughs”, Int. J. Applied Mathematics and Computer Science 22 (4), 907-919 (2012).
  • [14] W.P. Hunek and K.J. Latawiec, “A study on new right/left inverses of nonsquare polynomial matrices”, Int. J. AppliedMathematics and Computer Science 21 (2), 331-348 (2011).
  • [15] K.J. Latawiec, The Power of Inverse Systems in Linear andNonlinear Modeling and Control, Opole University of Technology Press, Opole, 2004.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c03159a1-232f-48c0-9aa2-62052639c440
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.