PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An NLP-based approach for improving human-robot interaction

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study aims to explore the possibility of improving human-robot interaction (HRI) by exploiting natural language resources and using natural language processing (NLP) methods. The theoretical basis of the study rests on the claim that effective and efficient human robot interaction requires linguistic and ontological agreement. A further claim is that the required ontology is implicitly present in the lexical and grammatical structure of natural language. The paper offers some NLP techniques to uncover (fragments of) the ontology hidden in natural language and to generate semantic representations of natural language sentences using that ontology. The paper also presents the implementation details of an NLP module capable of parsing English and Turkish along with an overview of the architecture of a robotic interface that makes use of this module for expressing the spatial motions of objects observed by a robot.
Słowa kluczowe
Rocznik
Strony
189--200
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
  • Department of Computer Engineering, Faculty of Engineering, Trakya University, Edirne, Turkey
autor
  • Department of Computer Programming, Edirne Vocational School of Technical Sciences, Trakya University, Edirne, Turkey
Bibliografia
  • [1] J. Cheng, W. Bian, and D. Tao, Locally regularized sliced inverse regression based 3D hand gesture recognition on a dance robot, Information Sciences, vol. 221, 2013, pp. 274-283.
  • [2] F. Yamaoka, T. Kanda, H. Ishiguro, and N. Hagita, A Model of Proximity Control for Information-Presenting Robots, IEEE Transactions on Robotics, vol. 26, no. 1, 2010, pp. 187-195.
  • [3] T. R. Gruber, A Translation Approach to Portable Ontologies, Knowledge Acquisition, vol. 5, 1993, pp. 199-220.
  • [4] F. Brown, A. Agah, J. Gauch, T. Schreiber, and S. Speer, Ambiguity Resolution in Natural Language Understanding, Active Vision, Memory Retrieval, and Robot Reasoning and Actuation, in Proc. of the IEEE International Conference on Systems, Man, and Cybernetics, 1999, pp. 988-993.
  • [5] H. Yanco and J. Drury, Classifying Human-Robot Interaction: An Updated Taxonomy, in Proc. of the IEEE SMC 2004 International Conference on Systems, Man and Cybernetics, 2004, pp. 2841-2846.
  • [6] H. Yanco, M. Baker, B. Keyes, and P. Thoren, Analysis of Human-Robot Interaction for Urban Search and Rescue, in Proc. of PERMIS, 2006.
  • [7] J. Casper and R. R. Murphy, Human-robot interactions during the robot-assisted urban search and rescue response at the World Trade Center, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 33, no. 3, 2003, pp. 367-385.
  • [8] G. Bekey, R. Ambrose, V. Kumar, A. Sanderson, B. Wilcox, and Y. Zheng, Final Report, World Technology Evaluation Center, Inc. Panel on International Assessment of Research and Development in Robotics, 2006.
  • [9] S. Tellex and D. Roy, Spatial Routines for a Simulated Speech-Controlled Vehicle, in Proc. of the 2006 ACM Conference on Human-Robot Interaction, 2006, pp.156-163.
  • [10] C. Sidner, C. Lee, L. Morency, and C. Forlines, The Effect of Head-Nod Recognition in Human-Robot Conversation, in Proc. of the 2006 ACM Conference on Human-Robot Interaction, 2006, pp. 290-296.
  • [11] O. Khatib, M. Peshkin, and Y. Matsuoka, pHRI -physical Human-Robot Interaction, in Proc. of the World Technology Evaluation Center, Inc. Workshop: Review of U.S. Research in Robotics, 2004.
  • [12] J. Hertzberg and A. Saffiotti, Using semantic knowledge in robotics, Robotics and Autonomous Systems, vol. 56, no. 11, 2008, pp. 875-877.
  • [13] G. Randelli, Improving Human-Robot Awareness through Semantic-driven Tangible Interaction, Ph.D. Thesis, Sapienza University of Rome, 2011.
  • [14] J. Marciniak and Z. Vetulani, Ontology of Spatial Concepts in a Natural Language Interface for a Mobile Robot, Applied Intelligence, vol. 17, no. 3, 2002, pp. 271-274.200 Kilicaslan Y., Tuna G.
  • [15] M. Skubic, C. Bailey, and G. Chronis, A Sketch Interface for Mobile Robots, in Proc. of the IEEE International Conference on Systems, Man and Cybernetics, 2003, pp. 918-924.
  • [16] G. J. M. Kruijff, H. Zender, P. Jensfelt, and H. I. Christensen, Situated dialogue and spatial organization: What, where... and why, International Journal of Advanced Robotic Systems, vol. 4, no. 2, 2007, pp. 125-138.
  • [17] M. Hasanuzzaman, T. Zhang, V. Ampornaramveth, H. Gotoda, Y. Shirai, and H. Ueno, Adaptive visual gesture recognition for human-robot interaction ,using a knowledge-based software platform, Robotics and Autonomous Systems, vol. 55, no. 8, 2007, pp. 643-657.
  • [18] J. Modayil and B. Kuipers, Bootstrap learning for object discovery, in Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004, pp. 742-747.
  • [19] J. R. Curran, S. Clark, and J. Bos, Linguistically Motivated Large-Scale NLP with C&C and Boxer, in Proc. of the ACL 2007 Demo and Poster Sessions (Association for Computational Linguistics), ,2007, pp. 33-36.
  • [20] T. Matsuzaki, Y. Miyao, and J. Tsujii, Effcient HPSG parsing with supertagging and CFG-filtering, in Proc. of IJCAI-07, 2007.
  • [21] R. Kaplan, S. Riezler, T. H. King, J. T. Maxwell III, A. Vasserman, and R. Crouch, Speed and accuracy in shallow and deep stochastic parsing, in Proc. Of HLT and the 4th Meeting of NAACL, 2004.
  • [22] S. Clark and J. R. Curran, Parsing the WSJ using CCG and log-linear models, in Proc. of ACL-04, 2004, pp. 104-111.
  • [23] J. Hockenmaier, Data and Models for Statistical Parsing with Combinatory Categorial Grammar, Ph.D. thesis, University of Edinburg, 2003.
  • [24] H. Kamp and U. Reyle, From Discourse to Logic; An Introduction to Model-theoretic Semantics of Natural Language, Formal Logic and DRT, Kluwer, Dordrecht, 1993.
  • [25] A. Tyler and V. Evans, The Semantics of English Prepositions: Spatial Scenes, Embodied Meaning and Cognition, Cambridge University Press, Cambridge, 2003.
  • [26] C.-R. Huang, N. Calzolari, A. Gangemi, A. Lenci, A. Oltramari, and L. Prevot (eds.), Ontology and the Lexicon: A Natural Language Processing Perspective, Cambridge, 2010.
  • [27] Y. Kilicaslan and E. S. Guner, Filtering Machine Translation Results with Automatically Constructed Concept Lattices, in Proc. of 8th International Conference on Concept Lattices and Their Applications (CLA 2011), 2011, pp. 59-73.
  • [28] P. Krajca, J. Outrata, and V. Vychodil, Parallel Recursive Algorithm for FCA. In: Proc. CLA 2008, 2008, pp. 71-82.
  • [29] H. Takeda and N. Toyoaki, Some Theoretical Considerations on Integration of Ontologies, Nara Institute of Science and Technology, Japan, 1998.
  • [30] R. Jackendoff, Semantic Structures, The MIT Press, 1990.
  • [31] ROS, http://www.ros.org
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c02bd0be-604f-4849-be65-e7fb15e8ea7c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.