PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Circular bioeconomy development factors in selected European Union countries (2012-2021)

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Czynniki rozwoju cyrkularnej biogospodarki w wybranych krajach Unii Europejskiej (2012-2021)
Języki publikacji
EN
Abstrakty
EN
Circular bioeconomy constitutes one of the key developmental strategies of the European Union. Understanding the conditions for the advancement thereof is crucial for successfully implementing these principles in daily production and consumption. The aim of this study was to identify the key drivers within bioeconomy indicators. The research was conducted based on bioeconomy indicators classified by the European Commission. Data were obtained from Eurostat and FAOSTAT, describing phenomena recognised as bioeconomy indicators for the period from 2012 to 2021. The analysis covered selected EU countries – member states that joined the community before 2004. The data underwent exploratory factor analysis, which identified five groups of indicators linked to underlying factors. These factors were identified as: Innovation, Institutional Conditions: Implementation of the Circular Economy Strategy, Institutional Conditions: Implementation of Sustainable Development Policies, Resource Efficiency, and Support and Expansion of Forested Areas. The analysis also identified certain risks associated with the development of bioeconomy, as measured by the indicators defined by the European Commission. The mentioned risks relate to a decline in food purchasing power and a decrease in biodiversity.
PL
Cyrkularna biogospodarka stanowi jedną z kluczowych strategii rozwoju Unii Europejskiej. Zrozumienie uwarunkowań jej rozwoju jest kluczowe dla sukcesu wdrożenia tych zasad w codzienną produkcję i konsumpcję. Celem niniejszego badania było zidentyfikowanie czynników stojących za postępem w obrębie wskaźników biogospodarki. Badanie zostało prze prowadzone w oparciu o wskaźniki biogospodarki sklasyfikowane przez Komisję Europejską. Dane pozyskano z Eurostatu i FAOstatu. Opisywały one zjawiska uznane za wskaźniki biogospodarki w okresie od 2012-2021. Analizie poddano wybrane kraje Unii Europejskiej – kraje członkowskie, które dołączyły do wspólnoty przed 2004 rokiem. Dane zostały poddane eksploracyjnej analizie czynnikowej. W badaniu wyodrębniono pięć grup wskaźników powiązanych z ukrytymi czynnikami. Czynniki te zostały zidentyfikowane jako: Innowacyjność, Uwarunkowania instytucjonalne: Realizacja strategii GOZ, Uwarunkowania instytucjonalne: wdrażanie polityk rozwoju zrównoważonego, Efektywność wykorzystania zasobów oraz Wsparcie i rozbudowa obszarów leśnych. Podczas analizy zidentyfikowane zostały również pewne ryzyka, z którymi wiąże się rozwój biogospodarki mierzony zdefiniowanymi przez KE wskaźnikami. Ryzyka te dotyczą spadku siły nabywczej żywności i spadku bioróżnorodności.
Rocznik
Tom
Strony
art. no. 925
Opis fizyczny
Bibliogr. 91 poz., tab., wykr.
Twórcy
  • University of Agriculture in Cracow
  • University of Applied Sciences in Nowy Targ
  • Cracow University of Economics, Rakowicka Street 27, 31-510 Kraków, Poland
Bibliografia
  • Abad-Segura, E., Batlles-delaFuente, A., González-Zamar, M. D., & Belmonte-Ureña, L. J. (2021). Implications for sustainability of the joint application of bioeconomy and circular economy: A worldwide trend study. Sustainability, 13(13), 7182. https://doi.org/10.3390/su13137182
  • Alviar, M., García-Suaza, A., Ramírez-Gómez, L., & Villegas-Velásquez, S. (2021). Measuring the contribution of the bioeconomy: The case of Colombia and Antioquia. Sustainability, 13(4), 2353. https://doi.org/10.3390/su13042353
  • Anex, R., Lynd, L., Laser, M., Heggenstaller, A., & Liebman, M. (2007). Potential for Enhanced Nutrient Cycling through Coupling of Agricultural and Bioenergy Systems. Crop Science, 47(4), 1327-1335. https://doi.org/10.2135/CROPSCI2006.06.0406
  • Antar, M., Lyu, D., Nazari, M., Shah, A., Zhou, X., & Smith, D. (2021). Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization. Renewable & Sustainable Energy Reviews, 139, 110691. https://doi.org/10.1016/J.RSER.2020.110691
  • Archibugi, D., Filippetti, A., & Frenz, M. (2020). Investment in innovation for European recovery: A public policy priority. Science and Public Policy, 47(1), 92-102. https://doi.org/10.1093/SCIPOL/SCZ049
  • Attila, B. (2013). Governance, culture and democracy: institutions and economic development of Eu member states. The Annals of the University of Oradea Economic Sciences, 1(1), 205-214. https://ideas.repec.org/a/ora/journl/v1y2013i1p205-214.html
  • Bajwa, D. S., Peterson, T., Sharma, N., Shojaeiarani, J., & Bajwa, S. G. (2018). A review of densified solid biomass for energy production. Renewable and Sustainable Energy Reviews, 96, 296-305. https://doi.org/10.1016/J.RSER.2018.07.040
  • Beckmann, M., Gerstner, K., Akin‐Fajiye, M., Ceaușu, S., Kambach, S., Kinlock, N., Phillips, H., Verhagen, W., Gurevitch, J., Klotz, S., Newbold, T., Verburg, P., Winter, M., & Seppelt, R. (2019). Conventional land‐use intensification reduces species richness and increases production: A global meta‐analysis. Global Change Biology, 25(6), 1941-1956. https://doi.org/10.1111/gcb.14606
  • Bell, J., Paula, L., Dodd, T., Németh, S., Nanou, C., Mega, V., & Campos, P. (2018). EU ambition to build the world’s leading bioeconomy - Uncertain times demand innovative and sustainable solutions. New biotechnology, 40, 25-30. https://doi.org/10.1016/j.nbt.2017.06.010
  • Besi, M., & McCormick, K. (2015). Towards a Bioeconomy in Europe: National, Regional and Industrial Strategies. Sustainability, 7(8), 10461-10478. https://doi.org/10.3390/SU70810461
  • Beugelsdijk, S., Klasing, M., & Milionis, P. (2018). Regional economic development in Europe: the role of total factor productivity. Regional Studies, 52(4), 461-476. https://doi.org/10.1080/00343404.2017.1334118
  • Bointner, R., Pezzutto, S., Grilli, G., & Sparber, W. (2016). Financing Innovations for the Renewable Energy Transition in Europe. Energies, 9(12), 1-16. https://doi.org/10.3390/EN9120990
  • Boschini, A., Pettersson, J., & Roine, J. (2013). The resource curse and its potential reversal. World Development, 43, 19-41. https://doi.org/10.1016/j.worlddev.2012.10.007
  • Bracco, S., Calicioglu, O., Gomez San Juan, M., & Flammini, A. (2018). Assessing the contribution of bioeconomy to the total economy: A review of national frameworks. Sustainability, 10(6), 1698. https://doi.org/10.3390/su10061698
  • Cano-Kollmann, M., Hamilton, R., & Mudambi, R. (2016). Public support for innovation and the openness of firms’ innovation activities. Industrial and Corporate Change, 26(3), 421-442. https://doi.org/10.1093/ICC/DTW025
  • Choi, H. S., Grethe, H., Entenmann, S. K., Wiesmeth, M., Blesl, M., & Wagner, M. (2019). Potential trade‐offs of employing perennial biomass crops for the bioeconomy in the EU by 2050: Impacts on agricultural markets in the EU and the world. GCB Bioenergy, 11(3), 483-504. https://doi.org/10.1111/gcbb.12596
  • Comrey, A. L., & Lee, H. B. (2013). A first course in factor analysis. New York: Psychology press.
  • Cristea, M., Noja, G. G., Marcu, N., Siminică, M., & Ţîrcă, D. M. (2020). Modelling EU bioeconomy credentials in the economic development framework: The role of intellectual capital. Technological and Economic Development of Economy, 26(6), 1139-1164. https://doi.org/10.3846/tede.2020.13159
  • Czyżewski, A., Grzyb, A., Matuszczak, A., & Michałowska, M. (2021). Factors for bioeconomy development in EU countries with different overall levels of economic development. Energies, 14(11), 3182. https://doi.org/10.3390/en14113182
  • D’Amato, D., Droste, N., Allen, B., Kettunen, M., Lähtinen, K., Korhonen, J., Leskinen, P., Matthies, B., & Toppinen, A. (2017). Green, circular, bio economy: A comparative analysis of sustainability avenues. Journal of Cleaner Production, 168, 716-734. https://doi.org/10.1016/J.JCLEPRO.2017.09.053
  • De Besi, M., & McCormick, K. (2015). Towards a bioeconomy in Europe: National, regional and industrial strategies. Sustainability, 7(8), 10461-10478. https://doi.org/10.3390/SU70810461
  • Diaconaşu, D., Bostan, I., Căutișanu, C., & Chiriac, I. (2022). Insights into the Sustainable Development of the Bioeconomy at the European Level, in the Context of the Desired Clean Environment. International Journal of Environmental Research and Public Health, 19(18), 1-14. https://doi.org/10.3390/ijerph191811286
  • Ellen MacArthur Foundation. (2019, February 12). The butterfly diagram: visualising the circular economy. https://www.ellenmacarthurfoundation.org/circular-economy-diagram
  • Escobar, N., Haddad, S., Börner, J., & Britz, W. (2018). Land use mediated GHG emissions and spillovers from increased consumption of bioplastics. Environmental Research Letters, 13(12), 125005. http://dx.doi.org/10.1088/1748-9326/aaeafb
  • European Commission. (2012). Innovating for sustainable growth : a bioeconomy for Europe. https://data.europa.eu/doi/10.2777/6462
  • European Commission. (2018). A sustainable bioeconomy for Europe : strengthening the connection between economy, society and the environment : updated bioeconomy strategy. https://data.europa.eu/doi/10.2777/792130
  • European Commission. (2023). The bioeconomy in different countries. https://knowledge4policy.ec.europa.eu/visualisation/bioeconomy-different-countries_en
  • European Commission. (2024a). EU Bioeconomy Monitoring System. https://knowledge4policy.ec.europa.eu/bioeconomy/monitoring_en
  • European Commission. (2024b). Eco-Innovation at the heart of European policies. https://green-business.ec.europa.eu/eco-innovation_en
  • Eurostat. (2024a). Agricultural factor income per annual work unit (AWU). https://ec.europa.eu/eurostat/databrowser/view/sdg_02_20/default/table?lang=en
  • Eurostat. (2024b). Biomass production in EU from primary production systems (agriculture, forests, fisheries). https://ec.europa.eu/eurostat/databrowser/view/env_ac_mfa__custom_9972635/default/table
  • Eurostat. (2024c). Biowaste generated by source. https://ec.europa.eu/eurostat/databrowser/view/env_wassd__custom_9972941/default/table
  • Eurostat. (2024d). Biowaste recovered by source. https://ec.europa.eu/eurostat/databrowser/view/env_wassd__custom_9972971/default/table
  • Eurostat. (2024e). Circular material rate. https://ec.europa.eu/eurostat/databrowser/view/cei_srm030/default/table?lang=en
  • Eurostat. (2024f). Energy productivity. https://ec.europa.eu/eurostat/cache/metadata/en/nrg_ind_ep_esmsip2.htm
  • Eurostat. (2024g). Food purchasing power. https://ec.europa.eu/eurostat/databrowser/view/prc_ppp_ind__custom_9916243/default/table
  • Eurostat. (2024h). Forest growing stock. https://ec.europa.eu/eurostat/databrowser/view/FOR_VOL_EFA__custom_9971032/default/table
  • Eurostat. (2024i). Government support to agricultural research and development. https://ec.europa.eu/eurostat/databrowser/view/sdg_02_30__custom_9916501/default/table
  • Eurostat. (2024j). Utilised agricultural area (UAA) managed by low-, medium- and high-input farms. https://ec.europa.eu/eurostat/databrowser/view/AEI_PS_INP__custom_6121962/default/table?lang=en
  • Eurostat. (2024k). Greenhouse gas emissions by source sector. https://ec.europa.eu/eurostat/databrowser/view/ENV_AIR_GGE__custom_6115648/default/table?lang=en
  • Eurostat. (2024l). Recycling rate of municipal waste. https://ec.europa.eu/eurostat/databrowser/view/cei_wm011/default/table?lang=en
  • Eurostat. (2024m). Share of organic farming in utilised agricultural area. https://ec.europa.eu/eurostat/databrowser/view/sdg_02_40/default/table?lang=en
  • Eurostat. (2024n). Share of renewable energy in gross final energy consumption by sector. https://ec.europa.eu/eurostat/databrowser/view/sdg_07_40/default/table?lang=en
  • Eurostat. (2024o). Share of energy from renewable sources. https://ec.europa.eu/eurostat/databrowser/view/NRG_IND_REN__custom_9316544/default/table?lang=en
  • Eurostat. (2024p). National accounts aggregates by industry (up to NACE A*64). https://ec.europa.eu/eurostat/databrowser/view/nama_10_a64__custom_12688114/default/table?lang=en
  • Eurostat. (2024r). Material flow accounts. https://ec.europa.eu/eurostat/databrowser/view/env_ac_mfa__custom_9972447/default/table
  • Eurostat. Statistics explained. (2024). Forests, forestry and logging. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Forests,_forestry_and_logging
  • Faaij, A. (2006). Modern Biomass Conversion Technologies. Mitigation and Adaptation Strategies for Global Change, 11, 343-375. https://doi.org/10.1007/S11027-005-9004-7
  • Faostat. (2024). Livestock density index. https://www.fao.org/faostat/en/
  • Hassan, S. S., Williams, G. A., & Jaiswal, A. K. (2019). Moving towards the second generation of lignocellulosic biorefineries in the EU: Drivers, challenges, and opportunities. Renewable and Sustainable Energy Reviews, 101, 590-599. https://doi.org/10.1016/J.RSER.2018.11.041
  • Huang, R., Kale, S., Paramati, S., & Taghizadeh‐Hesary, F. (2021). The nexus between financial inclusion and economic development: Comparison of old and new EU member countries. Economic Analysis and Policy, 69, 1-15. https://doi.org/10.1016/j.eap.2020.10.007
  • Inglesi-Lotz, R., Hakimi, A., Karmani, M., & Boussaada, R. (2020). Threshold effects in the patent-growth relationship: a PSTR approach for 60 developed and developing countries. Applied Economics, 52(32), 3512-3524. http://dx.doi.org/10.1080/00036846.2020.1713295
  • Jander, W., & Grundmann, P. (2019). Monitoring the transition towards a bioeconomy: A general framework and a specific indicator. Journal of Cleaner Production, 236, 117564. https://doi.org/10.1016/j.jclepro.2019.07.039
  • Jensch, C., Schmidt, A., & Strube, J. (2022). Versatile green processing for recovery of phenolic compounds from natural product extracts towards bioeconomy and cascade utilization for waste valorization on the example of cocoa bean shell (CBS). Sustainability, 14(5), 3126. https://doi.org/10.3390/su14053126
  • Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 31-36. https://doi.org/10.1007/BF02291575
  • Kardung, M., Cingiz, K., Costenoble, O., Delahaye, R., Heijman, W., Lovrić, M., van Leeuwen, M., M’Barek, R., van Meijl, H., Piotrowski, S., Ronzon, T., Sauer, J., Verhoog, D., Verkerk, P. J., Vrachioli, M., Wesseler, J. H. H., & Zhu, B. X. (2021). Development of the circular bioeconomy: Drivers and indicators. Sustainability, 13(1), 413. https://doi.org/10.3390/su13010413
  • Kirs, M., Karo, E., & Ukrainski, K. (2022). Transformative change and policy-making: the case of bioeconomy policies in the EU frontrunners and lessons for latecomers. Innovation: The European Journal of Social Science Research, 35(4), 514-546. https://doi.org/10.1080/13511610.2021.2003186
  • Kiseľáková, D., Šofranková, B., Onuferová, E., & Čabinová, V. (2020). Assessing the effect of innovation determinants on macroeconomic development within the EU (28) countries. Problems and Perspectives in Management, 18(2), 277-287. https://doi.org/10.21511/ppm.18(2).2020.23
  • Koppelmäki, K., Helenius, J., & Schulte, R. (2021). Nested circularity in food systems: A Nordic case study on connecting biomass, nutrient and energy flows from field scale to continent. Resources, Conservation and Recycling, 164, 105218. https://doi.org/10.1016/j.resconrec.2020.105218
  • MA, S., & Joachim, S. (2006). Review of History and Recent Development of Organic Farming Worldwide. Agricultural Sciences in China, 5(3), 169-178. https://doi.org/10.1016/S1671-2927(06)60035-7
  • Mandley, S., Wicke, B., Junginger, H., van Vuuren, D., & Daioglou, V. (2022). Integrated assessment of the role of bioenergy within the EU energy transition targets to 2050. GCB Bioenergy, 14(2), 157-172. https://doi.org/10.1111/gcbb.12908
  • Mitchell, D. (2008). A note on rising food price. Policy Research Working Paper, 4682. https://doi.org/10.1596/1813-9450-4682
  • Neema, F. (2023). The Impact of Advanced Food Processing Technologies on Agricultural Value Addition. International Journal of Agriculture, 8(2), 11-21. https://doi.org/10.47604/ija.2004
  • Neus, E., Haddad, S., Börner, J., & Britz, W. (2018). Land use mediated GHG emissions and spillovers from increased bioplastic consumption. Environmental Research Letters, 12, 1-19. https://doi.org/10.1088/1748-9326/AAD968
  • Onufrey, K., & Bergek, A. (2020). Second wind for exploitation: Pursuing high degrees of product and process innovativeness in mature industries. Technovation, 89, 102068. https://doi.org/10.1016/j.technovation.2019.02.004
  • Patermann, C., & Aguilar, A. (2018). The origins of the bioeconomy in the European Union. New biotechnology, 40, 20-24. https://doi.org/10.1016/j.nbt.2017.04.002
  • Pellegrini, P., & Fernández, R. J. (2018). Crop intensification, land use, and on-farm energy-use efficiency during the worldwide spread of the green revolution. Proceedings of the National Academy of Sciences, 115(10), 2335-2340. https://doi.org/10.1073/pnas.1717072115
  • Petersson, H., Ellison, D., Mensah, A., Berndes, G., Egnell, G., Lundblad, M., Lundmark, T., Lundström, A., Stendahl, J., & Wikberg, P. (2022). On the role of forests and the forest sector for climate change mitigation in Sweden. GCB Bioenergy, 14(7), 793-813. https://doi.org/10.1111/gcbb.12943
  • Radulović, M. (2020). The impact of institutional quality on economic growth: A comparative analysis of the EU and non-EU countries of Southeast Europe. Economic Annals, 65(225), 163-181. https://doi.org/10.2298/eka2025163r
  • Ramcilovic-Suominen, S., & Pülzl, H. (2018). Sustainable development–a ‘selling point’of the emerging EU bioeconomy policy framework? Journal of cleaner production, 172, 4170-4180. https://doi.org/10.1016/j.jclepro.2016.12.157
  • Roest, K., Ferrari, P., & Knickel, K. (2017). Specialisation and economies of scale or diversification and economies of scope? Assessing different agricultural development pathways. Journal of Rural Studies, 59, 222-231. https://doi.org/10.1016/J.JRURSTUD.2017.04.013
  • Rosario, C., Varum, C., & Botelho, A. (2022). Impact of Public Support for Innovation on Company Performance: Review and Meta-Analysis. Sustainability, 14(8), 4731. https://doi.org/10.3390/su14084731
  • Rosser, A. (2006). Escaping the Resource Curse. New Political Economy, 11(4), 557-570. https://doi.org/10.1080/13563460600991002
  • Sachs, J., & Warner, A. (2001). The curse of natural resources. European Economic Review, 45(4-6), 827-838. https://doi.org/10.1016/S0014-2921(01)00125-8
  • Schipfer, F., Kranzl, L., Leclère, D., Sylvain, L., Forsell, N., & Valin, H. (2017). Advanced biomaterials scenarios for the EU28 up to 2050 and their respective biomass demand. Biomass and Bioenergy, 96, 19-27. https://doi.org/10.1016/j.biombioe.2016.11.002
  • Schmidt, O., Padel, S., & Levidow, L. (2012). The bio-economy concept and knowledge base in a public goods and farmer perspective. Bio-based and applied economics, 1(1), 47-63. https://doi.org/10.13128/BAE-10770
  • Schütte, G. (2018). What kind of innovation policy does the bioeconomy need? New biotechnology, 40, 82-86. https://doi.org/10.1016/j.nbt.2017.04.003
  • Sharif, M. K., Zahid, A., & Shah, F.-U.-H. (2018). Chapter 15 - Role of Food Product Development in Increased Food Consumption and Value Addition. In A.M. Grumezescu & A.M. Holban (Eds.), Food Processing for Increased Quality and Consumption (pp. 455-479). Academic Press. https://doi.org/10.1016/B978-0-12-811447-6.00015-1
  • Szczepańska-Woszczyna, K., Gedvilaitė, D., Nazarko, J., Stasiukynas, A., & Rubina, A. (2022). Assessment of economic convergence among countries in the European Union. Technological and Economic Development of Economy, 28(5), 1572-1588. https://doi.org/10.3846/tede.2022.17518
  • The World Factbook. (2024). Aerable land. https://www.cia.gov/the-world-factbook/field/land-use/
  • Toppinen, A., Pätäri, S., Tuppura, A., & Jantunen, A. (2017). The European pulp and paper industry in transition to a bio-economy : A Delphi study. Futures, 88, 1-14. https://doi.org/10.1016/J.FUTURES.2017.02.002
  • Tshikovhi, A., & Motaung, T. E. (2023). Technologies and innovations for biomass energy production. Sustainability, 15(16), 12121. https://doi.org/10.3390/su151612121
  • van Leeuwen, M., Gonzalez‐Martinez, A., & Sturm, V. (2023). EU Outlook for Biomass Flows and Bio‐based Products. EuroChoices, 22(3), 13-20. https://doi.org/10.1111/1746-692X.12408
  • Verma, P., & Kumar Ghosh, P. (2022). REDD+ strategy for forest carbon sequestration in India. The holistic approach to environment, 12(3), 117-130. https://doi.org/10.33765/thate.12.3.4
  • Vitunskienė, V., Aleksandravičienė, A., & Ramanauskė, N. (2022). Spatio-temporal assessment of biomass self-sufficiency in the European Union. Sustainability 14(3), 1897. https://doi.org/10.3390/su14031897
  • Vlad, I. M., & Toma, E. (2022). The assessment of the bioeconomy and biomass sectors in central and Eastern European Countries. Agronomy, 12(4), 880. https://doi.org/10.3390/agronomy12040880
  • Wagenmakers, E. J. (2023). JASP (Version 0.17.1) [Computer software]. https://jasp-stats.org/
  • Whitehead, D. (2011). Forests as carbon sinks – benefits and consequences. Tree physiology, 31(9), 893-902. https://doi.org/10.1093/treephys/tpr063
  • Wieruszewski, M., & Mydlarz, K. (2022). The potential of the bioenergy market in the European union—An overview of energy biomass resources. Energies, 15(24), 9601. https://doi.org/10.3390/en15249601
  • World Bank. (2024). Employment in agriculture (% of total employment) (modeled ILO estimate). https://data.worldbank.org/indicator/SL.AGR.EMPL.ZS?locations=EU
  • Woźniak, E., Tyczewska, A., & Twardowski, T. (2021). Bioeconomy development factors in the European Union and Poland. New Biotechnology, 60, 2-8. https://doi.org/10.1016/j.nbt.2020.07.004
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c0294cf4-d2d3-4172-92b9-32db88a9133f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.