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Abstract
This paper presents an overview of the applications of computational intelligence techniques, viz. artificial neural networks, 
fuzzy inference systems, and genetic algorithms, for the design of biomaterials with improved performance. These techniques 
are basically used for developing data-driven models and for optimization. The paper introduces the domain of biomaterials and 
how they can be designed using computational intelligence techniques. Then a brief description of the tools is made, followed 
by the applications of the tools in various domains of biomaterials. The applications range in all classes of materials ranging 
from alloys to composites. There are examples of applications for the surface treatment of biomaterials, materials for drug 
delivery systems, materials for scaffolds and even in implant design. It is found the tools can be effectively used for designing 
new and improved biomaterials. 
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1. Introduction

For millennia, materials have guided technological ad-
vancement. The naming of historical epochs, from the 
Stone Age through the Bronze and Iron Ages and into 
the current Silicon Age, reveals their significance in the 
development of human civilization. The origin of di-
versity in the material world is still largely unknown to 
the general public, but over the last 50 years, the under-
standing of the professionals and their control over the 
microstructures and properties of the materials has de-
veloped dramatically (Olson, 2000). This age, which we 
can call an Age of Design, will be characterized by the 
discovery of novel materials and methods of producing 
them. Materials design is obviously not a new idea. The 
need for innovative materials to meet the evolving de-
mands of humanity has always been a struggle, as can 

be seen, if we only look back a few centuries to when 
materials engineering was first taking shape, perhaps 
under the names of metallurgy or ceramic engineering. 
Engineers and scientists have primarily relied on exper-
imental testing in their attempts to produce novel mate-
rials. The majority of efforts to create new materials or 
enhance the qualities of existing materials by changing 
their composition and/or microstructure still use this 
strategy. This iterative approach to problem-solving is 
typically predicated on a premise. A hypothesis is de-
veloped based on assumptions about the experimental 
results. The observations that lead to a theory serve as 
the foundation for the inductive reasoning process that 
creates the hypothesis. With each new trial, successful 
or not, the observation becomes richer. As a result, the 
system is better understood and the hypothesis is giv-
en more and more specifics. However, the procedure 
is cumbersome, expensive, and time-consuming. The 
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criteria vary as quickly as the world around us in the 
modern day.  It is the job of the materials scientist and 
engineers to provide the civilization with the needed 
materials (Pablo et al., 2014).

To reduce the time and cost for developing new 
materials, as per the requirement of the industry, com-
putational materials science provides several tools 
for designing materials (Pablo et  al., 2019). The sci-
ence-driven models in different length scales can find 
the behavior of the designed materials from the atom-
istic level to the microstructure and even the product/
component scale (Bhadeshia, 2008; Olson, 1997). 
Techniques like density functional theory and molecu-
lar dynamics are used by several materials scientists in 
the atomistic scale. Thermodynamic principles are used 
to model the phase transformation and microstructure 
designed. Different analytical concepts and numerical 
simulations are used to correlate the microstructure 
with the properties of the materials (Bozzolo et  al., 
2007; Koenraad et  al., 2010; Raabe, 1998). All these 
tools can be integrated to develop a multi-scale materi-
als modeling platform (McDowell et al., 2010). As the 
performances of materials depend on composition and 
processing, the manufacturing process also plays an 
important role for several important engineering mate-
rials. In such cases, integrating the processing param-
eters in the design process and thus incorporating the 
time scale along with the length scale becomes import-
ant. Integrated Computational Materials Engineering 
(ICME) tries to incorporate the tools like computational 
fluid dynamics or the kinetics of phase transformation 
into the materials modeling framework to approach the 
materials and manufacturing aspects together (Doghri 
et al., 2021; Yi Wang et al., 2019). 

Now that experimental and characterization facili-
ties in the materials sector have significantly improved, 
a large amount of data is being created globally. Yet un-
til a relational connection is made, data is meaningless 
beyond its presence. Information is created from data 
in this relational database (Fig. 1). Nowadays, high-end 
computers and sophisticated software make it a relatively 
simple matter to accomplish this. The problem of knowl-
edge extraction then arises. The true aim is to identify 
the inherent pattern of the relations in the data. The task 
might be greatly impacted by the strategy of data min-
ing or knowledge discovery using statistical or compu-
tational intelligence approaches (Kalidindi & De Graef, 
2015). The knowledge that was extracted might then be 
used to design materials with the requisite property or 
performance level. This materials design approach might 
easily reduce the risk of failure and save time and money. 
This method of engineering design is known as “mate-
rials informatics” in particular and “informatics-based 

design” in general (Liu et  al., 2006; Rajan, 2005; Suh 
et al., 2006). The ability to design materials utilizing al-
ternative methods of mathematical models created from 
the system’s underlying physics or chemistry has been 
made possible by advancements in computational ca-
pability. Apart from scholarly curiosity, such efforts to 
create newer materials will undoubtedly intensify with 
time. The techniques for designing materials using such 
models are crucial for the future of material discovery. 

Fig. 1. Different strategies for computational materials design

Except for a few errant attempts, informatics-based 
design and mechanistic or physical model-based de-
signs have been progressing together. The materials 
community feels there is a lack of science in the infor-
matics-based approach because they rely on fundamen-
tal research for modelling. The section attempting to 
champion the materials informatics domain was unable 
to identify many applications of the alternative strategy. 
Each side has its own logic and is correct in its own 
way but this strategy will be fruitless. These two strat-
egies must work together rather than against one an-
other. The informatics professionals should first decide 
that it should only apply to systems for which ab initio 
or other physics-based techniques are impractical. The 
results of the materials informatics area should be seri-
ously considered by the other group as well. Findings 
like these might result from the technique of knowledge 
discovery, helping to partially remove the restriction of 
physics-based models. The future of efficient materials 
design lies in the creation of hybrid systems that com-
bine scientific and technological modelling. Artificial 
Intelligence and Machine Learning techniques should 
collaborate with other types of modelling in regions 
where knowledge is not accurate or just experimental 
observations are available. These models will improve 
the material design and might be more efficient than 
any of the individual approaches (Mueller et al., 2016).
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Artificial Intelligence (AI) is the term used to de-
scribe the replication of human intelligence in devices 
that have been programmed to mimic human behavior 
(Yaghoubzadeh-Bavandpour et  al., 2022). The phrase 
can also be used to describe any computer that possess-
es human traits like learning and critical reasoning. The 
ability of a system to effectively read outside informa-
tion, to learn from it, and to use that learning to fulfil spe-
cific objectives and assignments through flexible trans-
formation is described in a more detailed definition as 
AI. Older standards that labelled AI become obsolete as 
innovation advances. Because this objective is currently 
underestimated as a computers’ capability, machines that 
develop requisite capabilities or detect text using model 
character identification are not now considered to ex-
hibit AI. On the other hand, Machine Learning (ML) is 
a branch of computational science that developed from 
knowledge gathered in both computationally based AI 
concepts and the learning of data classification based 
on comprehension (Nilsson, 2005). Machine learning is 
just teaching computers to learn automatically from in-
puts without explicit programming. The word “learning” 
originated with humans and other animals. There are 
many similarities between animal and machine learn-
ing. Indeed, several machine learning techniques were 
developed to represent computational models of the fun-
damentals of animal and human learning. For instance, 
habituation is a fundamental academic practice in which 
an animal gradually stops responding to a repeated stim-
ulus. The technique is finding newer applications in the 
domain of materials science (Schmidt et al., 2019).

According to the needs, AI uses a variety of com-
putational techniques to describe the system. However, 
a  considerable degree of uncertainty and imprecision 
must be accepted in order to search for and discover 
unknown correlations among the variables for a  sys-
tem not so specified, having complex and non-linear 
underlying interactions. Under these circumstances, 
Evolutionary Computation (EC), Artificial Neural Net-
works (ANN), and Fuzzy Logic (FL) are combined to 
form Computational Intelligence (CI) (Fig. 2). To make 
the CI family a little bit larger, occasionally a few ad-
ditional computational tools are added. Such a  suite 
of tools first appeared at the IEEE World Congress on 
Computational Intelligence in 1994 (in Orlando, Flor-
ida). Bezdek (1998) recommended defining a  system 
as computationally intelligent if it solely works with 
numerical (low-level) data, contains a  component for 
pattern recognition, and does not use knowledge as in 
the case of AI. Additionally, it must be computationally 
adaptive, fault resistant, have turnaround times that are 
nearly human-like, and have error rates similar to hu-
man performance. Another definition was developed by 

Eberhart & Shi (2007) in their book. They defined com-
putational intelligence as a computing-based approach 
that demonstrated the capacity to pick up new informa-
tion and/or deal with novel situations in such a way that 
the system was thought to have one or more attributes 
of reason, such as generalization, discovery, association, 
and abstraction. The description above makes it very ev-
ident that CI is a crucial tool for coping with uncertain-
ty and complexity. The majority of real-world material 
systems are extremely complicated and challenging to 
model with standard techniques. Additionally, CI has 
the ability to identify and abstract knowledge, which is 
extremely significant from a design perspective. 

Fig. 2. Computational intelligence

Among the ML tools, arguably the most prevalent 
and effective technique is ANN, which draws its inspira-
tion from organic nervous systems like the brain, and is 
able to create extremely nonlinear empirical correlations 
between the independent and responsive variables (An-
derson & Rosenfeld, 1995). It has many interconnected, 
highly nonlinear processing units that are referred to as 
neurons. Instead of using the standard Boolean logic of 
“true” or “false”, fuzzy logic (FL) computing is based 
on “degrees of truth” (1 or 0). Consequently, FL can be 
thought of as a superset of Boolean logic. Zadeh (1965) 
first proposed it in the 1960s as a way to simulate the 
ambiguity of natural language. In reality, fuzzy logic is 
a  tool for creating solutions to issues where precision 
and relevance must be balanced. The Fuzzy Inference 
System (FIS) uses fuzzy logic and can successfully be 
applied to material systems, where it can make use of 
an imprecise understanding of a system. Optimization 
strategies are crucial for developing novel materials. 
When it comes to designing new materials, several 
evolutionary computing techniques, which are a  part 
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of the CI group of tools, such as differential evolution, 
genetic programming, and genetic algorithms, are be-
coming increasingly important. All of these techniques 
have adaptable methods for dealing with restrictions 
and objective functions. The Genetic Algorithm (GA), 
the first and best-known evolutionary algorithm, models 
Charles Darwin’s idea of natural selection in order to 
find the best solution to a  problem (Goldberg, 2002). 
GA is basically a  stochastic global search approach 
that uses the survival of the fittest to try to evolve the 
optimum solution from a population of workable solu-
tions that were first produced randomly. As in the case 
of other engineering materials, the expected behaviors 
of the biomaterials are multifaceted. In many cases, the 
requirements are conflicting in nature. In such cases, 
a multi-objective genetic algorithm (Deb, 2001) comes 
handy for designing such materials. All these tools in 
the CI domain are getting a huge application in the field 
of materials design and manufacturing process optimi-
zation. The tools are particularly efficient for handling 
a high number of parameters related in a highly com-
plex and non-linear way within a materials system. To 
explore such hidden complexity of any materials sys-
tem, to gather more information about the role of the 
parameters in constituting the final behavior of the 
material and finally to design materials with improved 
performance, these tools are found to be perfectly suit-
ed. Thus, CI techniques are also being applied quite 
extensively for designing biomaterials, while CI tools 
are being heavily used for designing materials (Datta, 
2016; Datta & Chattopadhyay, 2013). Among all these 
techniques, ANN being the most applied modelling tool 
in materials engineering, the first comprehensive review 
on its application by Bhadeshia (1999) was published in 
1999. Chakraborti (2004) has reviewed the applications 
of GA in the field of materials design.

The American National Institute of Health’s defi-
nition of biomaterials as “any substance or combination 
of substances, other than drugs, synthetic or natural in 
origin, which can be used for any period of time, aug-
ments or replaces partially or completely any tissue, 
organ, or function of the body, in order to maintain or 
improve the quality of life of the individual” (Clinical 
Applications of Biomaterials, 1982) is the definition 
that is most widely accepted (Fig. 3). However, such 
a definition excludes items like surgical equipment and 
orthodontic braces (Bergmann & Stumpf, 2013). Gold 
and ivory were the first biomaterials used to replace cra-
nial abnormalities. Romans and Egyptians both accom-
plished this. Since the 1900s, biological materials like 
placenta have been employed. The Williams Dictionary 
of Biomaterials (Williams, 1999, pp. 33–54) defined 
biocompatibility as the “ability of a material to perform 

with an appropriate host response in a  specific situa-
tion”. Celluloid was the first man-made plastic used for 
cranial defects, and polymethyl methacrylate was one 
of the first polymers accepted after World War II. Al-
though this term initially appears unclear and useless, it 
constituted a huge advancement when it was originally 
introduced. Before this categorization, the general con-
sensus was that successful materials mostly served as 
inert components of the body. For “successful” bioma-
terials, a  large list of “non-properties” has developed, 
including nontoxic, non-immunogenic, non-thrombo-
genic, non-carcinogenic, etc. (Park & Bronzino, 2003; 
Ratner et al., 1996). The aforementioned criteria stipu-
lated that materials must not only perform some func-
tion but also acknowledge that the interface they create 
with their introduction would cause a biological reac-
tion. With the adoption of this concept, the notion that 
the substance might be really inactive was essentially 
discarded. The notion that a foreign substance could be 
inserted into our systems without triggering a reaction 
seems foolish given the level of awareness we have of 
our bodies as smart, complicated biological environ-
ments. Based on the tissue responses, it can be said that 
the biomaterials are those: a) which have a fibrous tissue 
layer between them and the bone tissue; b) having the 
ability to osseointegrate, or form chemical bonds with 
bone tissue, i.e. the implant surface is directly coated 
with the collagen and mineral phase of the neighboring 
bone; and c) under specific circumstances, it is possible 
to come into direct contact with the surrounding bone 
tissue when using bioinert materials, i.e. there must be 
no chemical interactions between the implant and the 
tissue (Yaszemski et al., 2004).

Fig. 3. Applications of biomaterials in the human body
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In the case of biomaterials, like any other materi-
als, the requirement for novel and improved materials 
is growing daily. Applications for tailored biomaterials 
with tunable functional characteristics range from drug 
delivery to regenerative medicine (Bryksin et al., 2014). 
Numerous design aspects and suitable models must be 
taken into account in order to increase the predictabili-
ty of biomaterials performances. Gronau et al. (2012) in 
their review paper discussed the state of the art of synthe-
sis and processing linked to the design of biopolymers, 
with a focus on the inclusion of bottom-up computational 
modelling. They evaluated the hierarchical structure and 
functional characteristics of three well-known biopoly-
mers, viz. elastin, silk, and collagen. They found a lack 
of integrated approach of experiments and computation 
in designing such materials. A  multiscale modelling in 
different length and time scales should be adopted to 
effectively approach the problem. The interaction be-
tween a cell and the biomaterial surface it grows on is 
still poorly understood, which makes it difficult to devel-
op biomaterials suitable for therapeutic use. This surface 
communication can have a significant impact on cellular 
behavior, which in turn affects the likelihood that a mate-
rial can successfully interact with the host tissue. In an at-
tempt to explain the molecular mechanisms driving these 
cell-biomaterial interactions, transcriptomics data have 
previously been correlated with measures of biomaterial 
properties. However, because these multi-assay data are 
so complicated, they must be carefully and unambigu-
ously characterized and stored, otherwise this could lead 
to the loss of important data or inaccurate data analysis. 
For this purpose, the Compendium for Biomaterial Tran-
scriptomics (cBiT, https://cbit.maastrichtuniversity.nl) 
has been established as a  publicly accessible resource, 
which may act as a platform for addressing such prob-
lems, and help in novel tailormade biomaterial develop-
ment (Hebels et al., 2017). Using a web interface, users 
of the data warehouse known as cBiT can search through 
biomaterial-based transcriptomics data sets. Data of in-
terest and related measurements of material qualities can 
be chosen and downloaded. Basu et al. (2022), in their 
review paper, acknowledged that the traditional methods 
for creating biomaterials and implants demand intelligent 
customization of process factors, protracted development 
times, and significant costs. Yet accelerating the man-
ufacture of tailored implantable biomaterials and bio-
medical devices is essential to fulfil the biomedical and 
therapeutic demands of modern society. The data-driven 
design approach based on the Materials Genome Initia-
tive was described by the authors as “biomaterialomics”, 
which is nothing but the integration of multi-omics data 
and high-dimensional analysis with AI technologies 
throughout the full pipeline of biomaterials production. 

They opined that the fourth-generation biomaterials and 
implants, whose clinical performance will be predicted 
using “digital twins”, will be developed using the data 
science-driven approach, which aims to bring together 
on a single platform the computational tools, databases, 
experimental methods, machine learning, and advanced 
manufacturing (e.g. 3D printing). The authors empha-
sized on the applicability of such approaches for three 
newly emerging research themes, namely patient-specific 
implants, additive manufacturing, and bioelectronic med-
icine. They highly advised that data science principles be 
taught to the new generation of researchers in addition to 
the greater adaptation of AI/ML technologies in biomate-
rials science. In another review paper, Russo et al. (2020) 
discussed how artificial intelligence and systems biology 
are being used in the design and development of vac-
cines. The authors felt that combining the two strategies 
will change healthcare by speeding up clinical trial proce-
dures and cutting back on the time and expense associat-
ed with drug development and research. They examined 
the fundamentals of systems biology and artificial intel-
ligence technologies used in the pipeline for developing 
vaccines. Though the vaccine is not within the domain of 
the present review, but the approach of amalgamation of 
data-driven modelling and system biology may be help-
ful for designing biomaterials too.

In the present review, primarily a brief description 
of the AI and ML techniques has been done with an em-
phasis on the computational intelligence tools. The next 
section deals with the applications of CI techniques in 
the different fields of biomaterials, starting with titanium 
alloys. Though among the metallic materials, stainless 
and Co-Cr alloys are also used as implant materials, but 
the research focus is more on the Ti alloys. Then such ap-
plications in the field of composite materials have been 
discussed. Then the coverage areas are applications in 
the fields of surface degradation and treatments of im-
plant materials, materials for drug delivery systems, ma-
terials for scaffolds and finally, applications in the field 
of implant design. The paper is concluded with a discus-
sion on the shortcomings of the present research and the 
future scope of applications of CI for better understand-
ing and innovations of new materials to serve the area of 
health engineering to achieve a better life for mankind.

2. Overview of  
Computational Intelligence methods

Computational Intelligence methods involve  a  range 
of approaches, as mentioned above, each with distinct 
specialties in executing a certain task. The approaches 
and methodologies are described in this section. As the 
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techniques are also included within the broader domain 
of AI and ML, the concepts of AI and ML are described 
first in brief, and then the CI techniques are described.

2.1. Artificial Intelligence

Artificial Intelligence (AI) is the recreation of human 
intelligence processes by machines which are built to 
think and act like humans. The phrase can also refer to 
every machine that demonstrates human-like character-
istics like training and problem-solving. Often people 
think of robots the first time they hear the term “AI”. It 
is because massive movies and books tell stories about 
machines that look like people and cause trouble on 
Earth (Shabbir & Anwer, 2018). But that couldn’t be 
more far from the reality. AI aims at enhancing knowl-
edge using a computer, rational thinking, and observa-
tion. The best thing about AI is that it can think and 
act in ways that gives the ideal opportunity to achieve 
a certain goal. A human way of thinking can be achieved 
in three ways: Self-examination – attempting to under-
stand our individual thoughts, emotional experiments – 
observation of one’s action and brain imaging – obser-
vation of brain’s action. 

AI operates by integrating huge data with rap-
id, repeated processing and advanced algorithms, en-
abling computers to automatically learn from patterns 
or characteristics in the data. The methodologies used in 
AI must be different. Trying to make a computer think 
like a human should be an integral part of actual science 
that relates to psychology, based on empirical evidence 
and hypotheses about real human thoughts and actions. 
On the other hand, a  rationalist method combines ele-
ments of engineering and mathematics related to statisti-
cal data, control theory, and finance (Russell & Norvig, 
2021). The two major classifications of AI are weak and 
strong artificial intelligence where the former involving 
a system to carry out only a specific task. All types of 
video games, Alexa and Siri are examples of weak AI. 
The strong AI system aims at carrying out any tasks sim-
ilar to humans. Here they are automated to tackle situa-
tions which require a problem solving ability. Automated 
surgeries and Self-driven cars are examples of strong AI. 
AI is a vast research area that encompasses numerous 
theories, methodologies, and techniques, in among the 
primary subfields such as Machine Learning (ML), Neu-
ral Networks and Deep Learning which will be described 
in the further sections. AI is being applied in numerous 
applications. A few important applications in our day to 
day life as highlighted in Figure 4 involve health care, 
e-commerce, robotics, finance, facial recognition, mar-
keting and social media etc.

Fig. 4. Major applications of AI

2.2. Machine Learning

Machine Learning (ML) is a  subfield of AI that pro-
gresses from the understanding-based learning of data 
analysis to the understanding of AI-based computation-
al principles. Machine learning is the process of teach-
ing computers to acquire knowledge automatically 
from their inputs without being explicitly programmed 
(Cielen et al., 2016). The concept of learning originat-
ed with both animals and humans. Machine learning 
and animal share numerous similarities. In fact, a sig-
nificant proportion of machine learning techniques are 
derived from computational models of human and an-
imal learning principles. Habituation is a fundamental 
scientific phenomenon in which an animal gradually 
stops reacting to repeated stimuli. Dogs are regarded 
as an ideal example of animal learning because they 
are capable of significant learning if they are taught to 
execute a variety of tasks, such as flipping over, eating, 
and collecting objects, etc. 

Regarding the previous illustration of effective 
learning, it is only a  couple of examples that exhibit 
machine learning in our modern day lives. Virtual as-
sistants, traffic forecasts using GPS tracking, monitor-
ing of surveillance cameras by AI to trace the crime or 
strange behavior of individuals, social networking sites 
utilizes ML for biometrics and news feed personaliza-
tion, streamlining of search engine outcome, junk mail 
filtering where a machine memorizes all the previously 
labeled spam e-mails by the viewer, and a large number 
of other applications make extensive use of machine 
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learning. All of these applications demonstrate that the 
integration of prior knowledge will favor the learning 
mechanism. ML is also strongly related to data science, 
through which it is acquainted with prediction-making 
(Langley, 2011). Anybody could wonder: “why must 
a machine learn something?”. There are several reasons 
how ML is necessary. Essentially, it is just mentioned 
that the success of machine learning may help us under-
stand how living creatures learn. 

However, only a  few key engineering aspects 
remain. Some of these functions cannot be described 
without an illustration; for instance, we may have the 
ability to recognize set of input/output, but not a clear 
relationship between inputs and desired outputs can be 
arrived. There are likely unknown correlations among 
inputs and outputs within a vast range of data. These 
correlations can be regularly shown by machine learn-
ing approaches. When is machine learning preferable 
to just programming a computer to accomplish a task? 
Complexity and the need for adaptability are two quali-
ties of a problem that may need the use of programs that 
learn and grow based on their knowledge and learn-
ing. There must be tasks that are difficult to program, 
such as human actions such as driving, interpretation of 
images, and language processing of a person, etc., for 
which the field of machine learning (ML) relies on the 
idea of experience-based learning to provide accept-
able outcomes (Shalev-Shwartz & Ben-David, 2013). 
The inflexibility of automated systems is a limitation; 
once the code has been developed and implemented, 
it cannot be altered. Nonetheless, many functions vary 
over time or amongst end users. For such situations, the 
usage of ML with encoding which decodes an existing 
source program by altering a fixed program to verify 
for differences in the writing styles of various users.

Though ML has proved revolutionary in some do-
mains, ML programs frequently fail to achieve the in-
tended outcomes (Dönmez, 2013). For example, in the 
year 2018, an Uber self-driven car was unable to rec-
ognize a pedestrian, resulting in his death (He, 2021). 
There are several reasons for this, including shortage 
of (appropriate) data, limited  access to the data, bias 
of data, privacy issues, poorly selected tasks and algo-
rithms, inappropriate tools and personnel, a shortfall of 
resources, and assessment issues. Machine learning is 
used in wide variety of applications. It has been seen 
that ML is a potential technology for the design and de-
velopment of biomaterials for a variety of biomedical 
applications. For instance, in applying ML for the mod-
elling and design of composite materials (Chen & Gu, 
2019) that would change the design and optimization 
of composites for the forthcoming era of materials with 
remarkable properties.

2.3. Metaheuristic optimization

Optimization is a common practice in daily life. We em-
ploy it knowingly or unknowingly for the majority of our 
daily activities. When we attempt to do a  professional 
task with less work or time, we are engaging in an opti-
mization technique. Amongst various optimization meth-
ods, the conventional derivative-based methods were the 
most well-established and prevalent. Any optimization 
algorithms are broadly classified as heuristic and deter-
ministic algorithms. Deterministic algorithms  emerge 
with a clear relationship between the characteristics of the 
system. When the relationship between the system attri-
bute and the fitness or objective of the system is intricate or 
ambiguous, it becomes difficult to tackle a problem prob-
abilistically. A heuristic algorithm (Michalewicz & Fogel, 
2004) collects information about the system, tests the fit-
ness of the randomized solution, and determines the next 
solution to generate. Therefore, these methods rely on the 
nature of the issue. A metaheuristic technique, on the other 
hand, mixes heuristics with the objective function with-
out regard to the problem’s structure (Blum & Roli, 2003; 
Glover & Kochenberger, 2003). Thus, a metaheuristic al-
gorithm broadens the applicability of heuristic methods to 
a variety of issues. Metaheuristics can locate high-quality 
solutions to problems of combinatorial optimization in an 
acceptable amount of time (Dhiman & Kumar, 2017). 

In recent years, however, the introduction of meta-
heuristic optimization techniques has altered the optimi-
zation domain and made these techniques more popular 
due to their capacity to tackle complicated problems and 
reduced likelihood of becoming stranded in local optima 
(Datta et  al., 2019; Halim et  al., 2021). A  metaheuristic 
technique includes the strategy of guiding and modifying 
pure heuristics to develop solutions that surpass those gen-
erated by heuristic methods. The metaheuristic optimiza-
tion approaches can be classified into three distinct catego-
ries. The first group comprises evolutionary computation, 
which includes evolutionary strategy, genetic program-
ming, differential evolution, genetic algorithm etc. The sec-
ond group is the swarm intelligence group, which includes 
ant colony and particle swarm optimization techniques and 
so on. These two classes of techniques are also known as bi-
ologically inspired optimization methods. The third group 
comprises of optimization methods influenced by physical 
processes, with simulated annealing being the most prev-
alent technique in this group. The classifications of meta-
heuristic algorithms are depicted in Figure 5. A few of these 
methods will be explored later in the further sections. The 
versatility of metaheuristic algorithms to address situations 
with multiple objective functions and restraints is greater. 
This has increased the application of these methods to dif-
ferent fields of study, especially in the design of materials.
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Fig. 5. The popular classes of metaheuristic algorithms

2.4. Computational Intelligence

The term Computational Intelligence (CI) is the study of 
evolutionary mechanisms that permits or assists intelli-
gent behavior in challenging and dynamic situations. It 
comprises a subset of AI. These mechanisms consist of 
AI paradigms that are capable of learning or adapting to 
new contexts, as well as generalizing, abstracting, dis-
covering, and combining. The CI models that are cov-
ered are as follows: Artificial Neural Networks (ANN) 
and Fuzzy interface systems (FIS) along with opti-
mization tools like Genetic Algorithm (GA) and other 
evolutionary and swarm intelligence based algorithms. 
Specific methods from such CI models have been suc-
cessfully implemented to tackle real-world issues, but 
the recent trend is to construct hybrid models, as no sin-
gle model is preferable in all circumstances. Thus, re-
searchers leverage the unique strengths of the hybrid CI 
models and eliminate their respective deficiencies. All of 
the CI models originated from biological systems. ANNs 
mimic biological neural networks, GA mimics the natu-
ral genetic evolution and FIS was derived from research 
into how species react to a different environment.

2.4.1. Artificial Neural Network

The Artificial Neural Network (ANN) approach has re-
cently emerged to be particularly beneficial in the field 
of computational materials science for resolving com-

plicated nonlinear problems. It is a  data information 
handling system that is cognitive and reliable, and it 
can represent complicated and complex situations. De-
spite of regression analysis, the ANN technique offers 
adaptation, learning, and prediction capabilities, result-
ing in superior predictive accuracy. The core benefit of 
a neural network model is that it can learn from expe-
riences and understand trends in a sequence of datasets 
containing input and output parameters without making 
any assumptions about one’s nature or interrelation-
ships. Any mathematical relations are not required for 
this model (Kurt & Oduncuoglu, 2015). ANN’s inher-
ent feature allows them to uncover more complicated 
correlations in datasets than traditional models. An Ar-
tificial Neural Network (ANN) is a data handling mod-
el based on how biological neurons, such as the brain, 
that process information (Mukherjee & Singh, 2009). 
It is made up of a vast number of extremely interlinked 
processing units called neurons that work together to 
solve issues. ANN is designed for a particular problem 
such as object recognition, clustering, or predictive 
learning. In biological systems, learning entails adjust-
ing the synaptic connections that arise amongst neurons 
(Anderson & Rosenfeld, 1995; Gurney, 2018). Every 
neural network has a  number of processing elements 
that get inputs from the outside environment, which are 
termed as “input layers” or “input nodes” respectively. 
It does, however, have one or even more hidden layers 
that only take inputs from some other processing ele-
ments. The ‘output layers’ are a set of processing ele-
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ments that indicate the eventual outcome of the neural 
network algorithm (Ganguly et al., 2016). In general, 
an artificial neural network (ANN) trains from experi-
ences and detects correlations in a collection of input 
and output units deprived of coming to any conclusions 
about their type or interrelationships (Mandal et  al., 
2009). 

Figure 6 shows the architecture of an ANN with 
a typical feedforward network, which is used in this study 
with three different interconnected layers as input  (x), 
hidden (Hj) and output (y) layers (Prajapati & Tiwari, 
2017). Each layer is linked using transfer functions. Tan 
hyperbolic (tanh) non-linear transfer function is used to 
link the input (x) and hidden nodes (Hj) which are artic-
ulated in Equation (1) involving the weighted sum of the 
normalized inputs (xi) with the connection weights (wji) 
that connects the input to hidden layers with the addition 
of its corresponding layer’s bias values (bj).
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The linear function is used to determine the output 
node (y) by a weighted sum of the outputs with the con-
nection weights (Wj) of hidden to output layer with the 
addition of its corresponding layer’s bias values (b') is 
articulated in Equation (2):

� �Y W H b
i

j j� � ��
�

(2)

By adjusting the weights wji, wi in Equations (1) 
and (2), different outputs can be obtained. The network 
is “trained” on a collection of data related to input–out-
put that are normalized to obtain the best values for 
these weights.

To do so, first normalize the input–output data in 
the range of −1 to +1 using Equation (3). 
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Where xN
j  is the normalized value, xj is the input or 

output parameter, and Xmax and Xmin are the upper and 
lower bounds of the corresponding parameter. By mod-
ifying the weights wji, the network can be trained to re-
duce an error function that would be essentially a nor-
malized total of squared errors. As a  result, an ideal 
representation of the input–output correlation emerges. 

The backpropagation (BP) algorithm  is created 
to handle the issue of finding connection weights for 
a multilayered ANN with feed forward linkages from the 
layers of input to the hidden and finally to the layer of 
output. The approach is a gradient algorithm in iteration 
(Ding & Chen, 2005) that aims to reduce the squared 
error between the expected and actual output. The BP 
learning method is depicted schematically in Figure 7.

ANN is  a  type of machine learning system that 
more precisely maps the existing input–output correla-
tion. It can take into account the nonlinearity of the cor-
relations between the variables.

Fig. 6. Configuration of ANN (Arulraj et al., 2022)
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Fig. 7. Schematic of backpropagation in ANN model

This technique has been proven to be highly suit-
able for estimating the tribological and mechanical char-
acteristics of composites, which are proven to be reliant 
on a set of multiple input variables when combined with 
the BP algorithm (Datta & Banerjee, 2006). In situations 
where establishing a physical model is challenging, neu-
ral networks can be used both successfully and efficiently.

2.4.2. Fuzzy interface system

Fuzzy logic is a  specialized version of the  tradition-
al (Boolean) theory that accounts for inconsistencies 
in data and imprecision in knowledge. In the 1960s, 
Dr. Lotfi Zadeh introduced it as a way to simulate the 
uncertainties of natural language. Furthermore, the range 
of applications grew to include consumer devices, elec-
trical equipment, automobiles, and highway monitoring 
systems (Zadeh, 1965, 1988; Zedeh, 1989). A fuzzy set 
is one whose boundaries are not sharp or well defined. 
As seen in fuzzy logic, the truth of every given asser-
tion is a question of degree; the set includes components 
with only a  level of membership. A membership func-
tion maps the membership value (or levels of member-
ship) of every point in the input space ranges between 
0 and 1. The structure of the curve of  the membership 
function can be described as a value that corresponds to 
the system’s specification in terms of clarity, accessibil-
ity, performance, and efficiency. The basic membership 
functions are straight line functions including the trape-
zoidal and the triangular, which is most commonly used.

Fuzzy linguistic characterizations are conceptu-
al representations of systems created by fuzzy if–then 
rules articulated as  

IF (x1 is A1, x2 is A2, …, xn is An) THEN  
� (y1 is B1, y2 is B2, …, yn is Bn) 

where xi and yj are the linguistic variables corresponds 
to the fuzzy sets Ai and Bj.

The FIS is depicted in Figure 8 as having three com-
ponents: a fuzzifier, an inference system with a fuzzy rule 
basis, and a  defuzzifier. Fuzzification aims to translate 
inputs to values between 0 and 1 using a  collection of 
membership functions of inputs. The fuzzy rules are used 
to provide fuzzy outputs for various rules. The results are 
subsequently blended to provide fuzzy output dispersion. 
There are numerous fuzzy combination strategies that are 
not mentioned here. Generally, fuzzy combinations are 
referred to as “T-norms”. In many circumstances, it is de-
sirable for a FIS to produce one crisp output. This number 
is obtained by a technique called defuzzification. Several 
strategies are also offered for defuzzification.

Fig. 8. Schematic of FIS

Mamdani (1977) and Sugeno (1985) are two of the 
most prevalent forms of FIS. Contrary to the Mamdani 
FIS, the Sugeno FIS does not compute the output im-
plication by clipping the membership function of the 
output by the rule severity. In fact, there isn’t any out-
put membership function in the Sugeno FIS. Rather, 
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the output is a number that is calculated by the product 
of each input by a constant and then adding the results. 
As is obvious from the preceding description, FIS is 
appropriate for modelling systems in which, on the one 
hand, imprecise information is communicated in a log-
ical if-then rule fashion rather than via expression, and, 
on the other hand, data are unavailable for constructing 
data-driven models such as ANN. This is a  common 
occurrence in complex and evolving material systems. 
Nonetheless, the efforts performed in the area of mate-
rials modelling with FIS are not yet noteworthy.

2.4.3. Genetic Algorithm

Genetic Algorithms (GAs) involve biologically based 
computing techniques, which act according to the con-
cepts of Darwinian natural selection theory. Most of the 
studies involving engineering optimization find it to be 
a fit one as the method is highly effective. Thus GA is 
a hunting technique founded on selection via nature and 
ideologies of natural genetics so as to arrive at the fin-
est result for any definite problem (Deb, 1995; Kramer, 
2017). GA focuses on feasible solutions population so as 
to bring out superior approximations for a specific solu-
tion by using the concepts of survival of the fittest. By 
selecting individuals as per their fitness level and mating 
them collectively, a new collection of solutions is generat-
ed with each successive generation. Similar to natural ad-
aptation, this process results in the evolution of individual 
populations that are more adaptable to their environment 
than their ancestors. In genetic algorithm (GA), a prob-
able solution to an issue is encoded as a set of variable 
strings known as chromosomes. A single chromosome is 
regarded as a unique solution, and a huge population of 
solutions with random parameter values is generated. 

Breeding involves two operators, namely cross-
over and mutation. Crossover facilitates basic biologi-
cal cross‐fertilization and mutation implies noise intro-
duction. To obtain remarkably good results for a range 
of problems, one needs to apply these operators in 
a simple manner with the aid of a rational mechanism 
of selection. Crossover and mutation are followed by 
the assignment of fitness values to individuals. There-
after the individuals are selected for the process of mat-
ing, considering their respective fitness levels backed 
by objective function evaluation which is continued via 
successive generations. Individual’s performance may 
be enhanced in this manner by way of preserving good 
individuals to be cross bred. The individuals that are 
less fit eventually die out in the process. Upon satisfac-
tion of some criteria, the GA method is concluded. i.e., 
after attainment of a specific point in the search space, 

or after a said amount of generations, and a mean de-
viance in population. It is significant to notice that 
a range of prospective solutions are derived for any giv-
en problem by GA and there are options for the user to 
elect from. GA helps in the simultaneous identification 
of substitute solutions in scenarios wherein any specific 
problem does not have a single possible solution just as 
in the case of a multi‐objective mode of optimization.  

The representation in Figure 9 highlights a simple 
genetic algorithm (SGA) structure as per Goldberg’s de-
scription (Datta & Chattopadhyay, 2013). GA initializes 
a random population comprising potential solution points 
called individuals in the first step. It is decided first if the 
individual can be deemed good or bad for the given prob-
lem, depending on the fitness obtained from objective 
function evaluation. After evaluation and assignment of 
fitness value to each individual, the first genetic operator 
namely the selection process and the initial population 
meet. This operator increases the probability of survival 
for strong individuals while degrading the fitness of the 
weakest. Following that, the crossover operator is used 
to a subset of individuals in order to create new individ-
uals by combining the current ones. Crossover occurs as 
a  result of reproduction and permits two individuals to 
swap structures based on the probability factor. As a re-
sult, a pair of offspring solutions have been created; each 
with the qualities of their parents (Booker, 1987).

The mutation operator is then used to provide pop-
ulation diversity. Because a  population’s fitness may 
remain stable for several generations before a superior 
individual is discovered, standard termination criteria 
become difficult. A frequent technique is to end the GA 
after a  predetermined amount of generations and for 
comparing the quality of the population’s best mem-
bers to the problem criteria. If no satisfactory answers 
are seen, the GA shall be repeated or a new search with 
a larger number of generations is initiated. 

Many optimization challenges in the real world in-
volve numerous conflicting goals.  During multi-objec-
tive situations, one of the methods is genetic searching 
based on the principle of Pareto optimality (Deb, 2001; 
Deb et al., 2002). Having many contradicting objective 
functions, the idea of ‘optimal’ is embodied by groups 
of solutions that provide the best feasible tradeoffs be-
tween the objectives. These solutions are known as the 
Pareto, as opposed to the global optima utilized in prob-
lems with single-objective. The mere meaning of Pareto 
optimality necessitates that no alternative conceivable 
solution could be at least as good as a part of the Pareto 
set with regard to all outcomes, and strictly better with re-
gard to at least one. Numerous multi-objective genetic al-
gorithms have thus far been presented based on selection 
procedures that employ the principle of non-domination.
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Fig. 9. A schematic representation of a simple genetic algorithm 

2.4.4. Hybridization of ML  
using evolutionary algorithms

Several researchers (Chakraborti, 2022; Giri et al., 2013b; 
Hariharan et al., 2014; Roy et al., 2020) have attempted 
to use different hybrid ML models and evolutionary al-
gorithms for solving various multi-objective problems. 
A few hybrid models are Predator–Prey GA (PPGA) and 
ANN, Evolutionary Neural Network (EvoNN), Bi-Ob-
jective Genetic Programming (BioGP) and Evolutionary 
Deep Neural Network (EvoDN). EvoNN was estab-
lished to use the evolutionary algorithms in a multi-ob-
jective fashion on a population of NNs in order to avoid 
the issue of underfitting and overfitting in the conven-
tional NN (Chakraborti, 2016; Pettersson et al., 2007). 
The ANN models produced by EvoNN have just one 
hidden layer. This is expressed as a × b matrix in the 
EvoNN method, where a  is the amount of input nodes 
and amount of output nodes as b. To hold bias values, 
an additional row is introduced. A population of ANNs 
can be created by stacking together these new 2-D ma-
trices. A  neural network with many hidden layers and 
various numbers of nodes in each layer is created using 
EvoDN (Roy & Chakraborti, 2022). Each layer typically 
has a varied number of connections; hence they can’t be 
expressed by identically sized 2-D matrices. The pro-
gramme groups the weights and biases of similar layers 
from the entire population together within 3-D matrices 
as before to get around this problem when processing 
the full population, and then groups the numerous 3-D 
matrices clubbed in a cell structure. This makes manip-
ulating and handling the populace simpler. The BioGP 
method (Giri et al., 2013a) uses a single objective opti-

mization method to reduce prediction error at first, and 
a bi-objective optimization scheme based on GA to find 
a balance between accuracy and complexity. An advan-
tage of the BioGP method is that it acts as a decision 
maker which freely chooses the mathematical process-
es necessary to build a meta-model. EvoNN and BioGP 
both use the Predator Prey Genetic Algorithm (PPGA) 
as its foundation. Predator-prey GA often imitates the 
biological conflict that exists between different species 
in a natural forest. The natural occurrence of predators 
seeking their prey in a  forest served as the model for 
the predator-prey GA (Deb et al., 2019). As a result, the 
stronger prey survives while the weaker ones are more 
likely to be killed by the predators. The potential solu-
tion set in this case is represented by the prey population. 

3. Applications of CI in the design of 
bio-materials

The following discussion aims at the use of CI ap-
proaches for the design of bio-materials with superior 
performance properties. 

3.1. Titanium alloys for hard tissue implants

Titanium (Ti) alloys are the most prominent biomaterials 
for a wide variety of biomedical applications mostly in the 
domain of dental and orthopedic implants. The main ad-
vantages of Ti alloys are their high specific strength, low 
corrosion resistance and adequate biocompatibility. In the 
case of hard tissue impacts, the elastic modulus of the im-
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plant materials should be as close as possible to the mod-
ulus of the cortical bone to avoid stress shielding in the 
adjacent bones. Low modulus Ti alloys with high strength 
for bio-compatible implants are much needed in optimal 
values of alloying elements. Utilizing CI approaches helps 
one to predict and optimize the targeted properties of the Ti 
alloys. 308 Ti alloys were modeled by Noori Banu & De-
vaki Rani (2018) using ANN to design products with op-
timal mechanical properties and better bio-compatibility. 
The processing parameters and composition of the alloy 
were considered as inputs and mechanical properties viz 
yield strength, tensile strength and elastic modulus as out-
puts. The ANN model has predicted the influence of Tan-
talum and Niobium at high concentrations will increase 
the yield and tensile strength wherein it reduces the elastic 
modulus closer to the cortical bone. Sultana et al. (2014) 
developed a Ti alloy with high strength and low elastic 
modulus for use in prosthetics, where the needed qualities 
were inherently contradictory and require multi-objective 
optimization utilizing ANN and GA. 

Four different optimization studies were done 
through multi-objective GA optimization using differ-
ent developed ANN models with the objectives of max-
imizing three properties viz Yield Strength (YS), Fibro-
blast Outgrowth (FBG) and growth rate of L929 cells 
and minimizing the Young’s modulus (E) of Ti alloy. 
The ANN prediction for the yield strength model has 
given a high coefficient of regression as 0.826 with the 
least error. Due to conflicts between different objectives, 
Pareto fronts with 3 different objectives in the combina-
tion of E-YS-FBG using GA have shown a maximizing 
trend in the required properties. The alloy composition 
of the corresponding Pareto solutions found to contain 
high amount of β stabilizers, as expected.

β-Ti alloy is one of the promising Ti-alloys for the 
use as bio-implants which can have low modulus and high 
strength. This can be achieved by synchronizing the con-
tent of β stabilizer. In the field of materials science, the 
neural network technique is widely regarded for detecting 
alloy properties such as thermal deformation behavior, 
formation of fatigue cracks, corrosive behavior, stress-
es, phase transition etc. (Sidhu et al., 2021). Quan et al. 
(2015) predicted the structural response in Ti-13Nb-13Zr 
alloy using ANN. C.-T. Wu et al. (2020) have presented an 
ANN based on machine learning to build a cheap Ti alloy 
with Young’s modulus similar to bone. The final optimal 
network model for determining martensitic transition start 
temperature was 6–8–8–1, and a low-cost Ti alloy contain-
ing Ti-12Nb-12Zr-12Sn with a much low Young’s modu-
lus of 42.4 GPa was proposed. Yang et al., (2020) discov-
ered that the cluster-formula integrated hybrid ML model 
offered a range of new low modulus Ti alloys, and that 
these estimated moduli were in excellent agreement with 
the experimental data. A  similar ANN based design of 
β-Ti alloys was made by a number of other researchers 
(Sudhakar & Haque, 2013; Wu et al., 2022). 

Datta et al. (2013, 2016) used multi-objective op-
timization studies to design β-Ti alloys for use in the 
application of a  prosthesis utilizing Reduced Space 
Searching (RSS) Algorithm and Fuzzy inference sys-
tem (FIS). The objectives of the study were to have high 
strength and a low Young’s modulus along with defined 
biocompatibility of the β-Ti alloys. The three-layered 
FIS correlating the compositional and process variables 
with the microstructural parameters and finally with the 
properties were developed as shown in Figure 10. The 
rules were generated partially using the system knowl-
edge and partially from the data. 

Fig. 10. Schematic diagram of the FIS correlating the properties with the composition, processing and microstructure  
(Datta et al., 2016)
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Fig. 11. Prediction of elastic modulus by the developed FIS 
(Datta et al., 2016)

Figure 11 shows the predictions made by the FIS. 
Here it can be noted that the predictions are quite ac-
ceptable considering the fact that the model has used 
the linguistic if-then rules also to describe the correla-

tion. Figure 12 shows some of the simulation results in 
the form of surface plots generated from the predictions 
of the FIS. Here the correlation between the micro-
structural parameters and the properties was revealed 
quite effectively. 

Figure 13 shows the Pareto front of the Young’s 
modulus and yield strength. From the figure, it is ev-
ident that the there is a  concise knee region in the 
front that shows the best area for the decision mak-
ing as there was a shift from either direction of the 
knee region where the solutions lose one objective 
continuously with no significant gain in the oth-
er objective. Some sample alloy compositions that 
correlate to solutions in the knee region were tak-
en as  the Pareto solutions of the front, the Cr con-
centration was regularly maintained about 20 wt%, 
which ensures appropriate β phase morphology and 
thereby reduces the Young’s modulus of alloys. Also, 
the need of aluminium (Al) and Tin (Sn) element is 
significant from the designed Ti alloys (Datta et al., 
2013) which would pave a way of experimental de-
velopment of the alloy.

Fig. 12. Surface plots showing the relation between the properties and (Datta et al., 2016)

a) b)

c)
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Fig. 13. Pareto front of E vs YS (Datta et al., 2016)

Another traditional methodology to predict the 
kinetic, thermodynamic and other related properties 
of multiphase materials models known as CALPH-
AD (Calculation of Phase Diagrams) was used by 
few of the researchers. (Chakraborti, 2022; Sund-
man et  al., 2021). Jha & Dulikravich (2021) have 
identified the new compositions and temperatures 
of Ti-Nb-Zr-Sn alloy that will aid in increasing the 
β phase stability while reducing the ω and α phase 
formations for biomedical applications. This study 
helped to develop a newer Ti alloy using CALPHAD 
for analyzing the different phase’s stability, Deep 
learning ANN models to predict the different phases 
of temperatures and new compositions. Further, they 
used self-organizing maps for finding the correla-
tions among the composition, phase stability and 
processing temperatures.

3.2. Composites as biomaterials

The design of bio-composites using CI methods for 
a wide variety of medical applications have given some 
promising findings for medical practitioners in the de-
cision making for several issues. The mechanical, wear 
and biocompatibility of the composites are optimized. 
The different classifications of bio-composites are 
broadly as Metal Matrix Composites (MMC), Polymer 
Matrix Composites (PMC) and Ceramic Matrix Com-
posites (CMC). The applications of CI techniques for 
designing such composites are as follows.

Partially Stabilized Zirconia (PSZ) / Stainless 
Steel (SS) 316L bio-ceramic composites were de-
signed and developed using two types of CI tools 
namely ANFIS and Support Vector Regression 
(SVR). These models were developed to predict the 
hardness and relative density values of PSZ/SS316L 
composites (Jajarmi et  al., 2019). Both the model’s 

accuracy was verified using statistical data viz de-
termination coefficient, Root Mean Squared Error 
(RMSE) and Mean Relative Error (MRE). Both the 
developed models supplied better performance of 
the composites in comparison with the experimen-
tal findings. The predicted values given by the AN-
FIS model have low RMSE and a low percentage of 
MRE. The wear behavior of the SS/HAP bio-com-
posites was analyzed using ANN by Younesi et  al. 
(2010). The objective of the study was to predict the 
volumetric wear loss of the SS/HAP composites for 
the various wear distances and loads as the influenc-
ing parameters. The predicted results of wear loss by 
the developed ANN model were well matched with 
experimental results. Hence this model was used to 
find the wear loss of various composites at different 
values of wear distance ranging from 0 to 1000 m and 
various loads. 

Thomas et al. (2020) designed a  two layered Ti 
alloy / HAP composite for use as a  dental implant 
with Ti alloy as inner core and HAP as outer shell 
using GA based multi-objective optimization. The in-
ner core was meant to maintain the low stiffness of 
the structure, and in the outer shell HAP was added 
to make the implant bioactive for achieving superior 
osseointegration. The trained ANN models were uti-
lized to predict the alloy properties. The ANN models 
were clubbed with rule of mixture for predicting the 
properties of the outer shell as well as the properties 
of the implant, and thus to form the objective function 
for achieving the high strength and low modulus of 
the implant. The optimization results showed that the 
β stabilizers like Mo, Sn and Cr were the preferred 
alloying elements. As the presence of β phase in Ti 
alloy decreases its modulus, the results are expected 
for lowering the stiffness of the implant. The optimum 
solution also had some amount of Al and Fe for main-
taining the strength level. The HAP volume fraction 
varied between 5% and 6%. In the Pareto front, it was 
seen that for lower values of modulus the radius of 
the core was high and higher amounts of alloying ele-
ments to achieve higher β content. 

Al-Waily et al. (2020) have analyzed the fatigue 
properties of removed denture that exposed to varying 
loads over time leading to failure under dynamic be-
havior. Two biomaterials namely HAP and Graphene 
Nanoplatelets (GNP) were chosen as reinforcements 
for analyzing the dynamic behavior of the denture. 
The ANN technique was used to predict the fatigue 
strength of the denture with the input parameters 
as the composition of reinforcements ranges from 
0.25% to 1.25% of weight fraction. The ANN mod-
el has predicted a better influence on the addition of 
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2 reinforcements in a low amount to the denture that 
increases the fatigue life of it. From the findings of 
ANN, fatigue characteristics of GNP reinforced den-
ture have given a better improvement in comparison 
with the HAP reinforced denture. 

Hyaluronic Acid (HA) – Polyethylene Glycol 
(PEG) composites have been developed by Jeong 
et al. (2014) using ANN for the utilization in the ap-
plications of regenerating soft tissues and cell deliv-
ery. The aim of this study was to quickly monitor 
the formations of hydrogel in the HA-PEG compos-
ites. ANN model was helpful to correlate the rela-
tions among the parameters related to the hydrogel 
formation of HA-PEG composites and the measure 
of biological response of every type of cell in the 
intervertebral disc. The finding through the predic-
tion of ANN was that the lower molecular weight HA 
yielded a  higher amount of cell formation leading 
to multiple clusters of cells. R. Kumar et al. (2022) 
have made use of Taguchi and GA based optimiza-
tion methods to predict the optimum dimensions of 
part in the manufacturing of polymeric bio-compos-
ites using Fused Deposition Modeling (FDM). The 
objective of the study was to minimize the variable 
dimensions of FDM based polymeric bio-compos-
ites. Through this optimization study, the influencing 
parameters that yield the accuracy in the dimensions 
of FDM parts were the orientation angle and thick-
ness of the layer. The mechanical characteristics of 
epoxy nanocomposites reinforced with Graphene 

Oxide (GO) and HAP was enhanced using GA with 
the developed statistical models from ANN, RSM 
and decision tree approaches. Through modelling de-
cision tree and ANN have given the better prediction 
of mechanical properties of epoxy/HAP/GO nano-
composites. GA was used to optimize the mechan-
ical properties viz flexural strength, compression 
strength and flexural modulus. Both from modelling 
and GA based optimization, the lesser amount of GO 
and higher amount of HAP was required to improve 
the flexural and compression behavior of the hybrid 
epoxy nanocomposites.

Choudhury et  al. (2022) designed and devel-
oped hybrid Polyether-Ether-Ketone (PEEK) com-
posites for the application of cervical gages using 
ANN and GA by simulating the data through Finite 
Element Analysis (FEA). The FEA stress analysis 
was done on the cages of varying dimensions and 
shapes kept between C3 and C4 vertebrae level of 
the cervical spine. An ANN metamodel was devel-
oped from the simulated data for the stress analysis. 
The elastic modulus of the peek composites was also 
predicted by another ANN model with the correla-
tion of various reinforcement particles. This model 
was acted among inputs of the formerly developed 
ANN metamodel. These two ANN models were used 
as an objective function for the GA based optimiza-
tion studies. Pareto solutions from GA have given an 
insight on selecting the desired cages for the use in 
cervical spine. 

Fig. 14. The scheme of computation for designing UHMWPE composites (Vinoth et al., 2021a)
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Computational intelligence based design of hybrid 
ultra-high molecular weight polyethylene (UHMWPE) 
bio-composites was developed for use in the acetabu-
lar cup of a hip prosthesis. The blend of ANN and GA 
approaches were used to predict and optimize the me-
chanical and wear properties of the UHMPWE Hybrid 
composites (Arulraj et al., 2022; Vinoth & Datta, 2020a, 
2020b; Vinoth et  al., 2021a, 2021b). The mechanical 
properties namely elastic modulus (E), Hardness (H) and 
Ultimate Tensile Strength (UTS) and wear properties 
namely Specific Wear Rate (SWR) and Coefficient of 
Friction (CoF) of the UHMWPE composites were con-
sidered as targeted parameters. The scheme of designing 
the composites is given in Figure 14. The geometry and 
weight percent of the four different nano/micro rein-
forcement particles were considered as the influencing 
input parameters. Individual ANN models were devel-
oped for each of the required properties of composites 

through iteration. The selection of the models was based 
not only on the higher regression coefficient, but also 
on the sensitivity analyses that exposes the correlation 
among the input and targeted output variables. The de-
veloped ANN models were then utilized as the objective 
function for the optimization studies using GA.

The objective was to maximize the mechanical 
properties and minimize the wear properties with nec-
essary constraints to find the optimal percentage of 
composition required to manufacture the composites. 
Figure 15 shows the Pareto front for COF and the spe-
cific wear rate of the UHMWPE composites for vary-
ing molecular weight of the matrix material. Figure 16 
shows the Pareto front when three objectives were 
considered together, i.e. two wear properties and one 
mechanical property. The optimum values design vari-
ables in the Pareto solutions provided a guideline for 
experimental validation.

Fig. 15. Pareto front for COF and specific wear rate of the UHMWPE composites  
for different molecular weight of the matrix material (Vinoth et al., 2021a)

 

Fig. 16. Pareto front for optimizing three objectives: a) COF, SWR and E; b) COF, SWR and H  
for UHMWPE composites (Vinoth et al., 2021a)

a) b)
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The replacement of oil based biomaterials with 
starch based biopolymer composites led the way for 
many researchers to enhance the mechanical charac-
teristics of such biopolymer composites. Guessasma 
& Bassir (2010) attempted to enhance the mechanical 
characteristics of Starch–Zein biopolymer composites 
especially on the elastic behavior of the composites. 
They used a numerical approach to studying the phase 
behavior (interfacial) and various elements of micro-
structures which were directly related to the elasticity 
of the biopolymer composites. A hybrid method relat-
ing the finite element method and a genetic algorithm 
was utilized that provided a  relationship among the 
essential, interfacial properties and active properties 
of the composites. With the help of finite element out-
comes, the determination of a suitable law for defining 
the active modulus of elasticity was established using 
ANN and GA methods. ANN predicted an open rela-
tionship among the elastic modulus and the microstruc-
tural behaviour of the composites. Through GA, it was 
found that the elastic modulus was linearly varied with 
the interfacial properties and has nonlinear behavior in 
terms of phase content. 

Karimi et  al. (2015) have investigated the effec-
tiveness of the ANN approach for predicting the diam-
eter of a nanofiber in order to determine the shape and 
thickness of the fiber. A blend of chitosan and poly vi-
nyl alcohol (PVA) in varying proportions was used as 
a matrix nanofiber material. A dataset comprises of dif-
ferent samples of nanofibers was used for training and 
testing in the modelling of different ANN networks. 
A  best model with 3 hidden layers iterated with 5, 8 
and 16 hidden nodes was chosen. This model predicted 
a suitable fiber diameter with a better coefficient of cor-
relation and least mean square error and proved the ef-
fectiveness of ANN during the prediction. To examine 
the implications further, a 3D plot involving the param-
eters of the electrospinning process and the diameter of 
nanofiber was designed.

3.3. Surface treatment of 
biomaterials and implants

The coating of biomaterials and surface modification 
are avenues which improve the surface characteristics 
of biomaterials. To understand the effect of the process-
ing parameters with the surface characteristics, the use 
of CI approaches has paved a way for the researchers 
to design the biomaterials through surface modifica-
tions. Surface characterization of bone implant made 
of Titania (TiO2) nanotubes was analyzed using fuzzy 
inference system. The fuzzy approach was used to de-

termine the relative significance of various features 
of TiO2 nanotubes on the surface of the bone implant 
based on its functions and the associated inter depen-
dence properties (Martinez-Marquez et al., 2020). This 
requires an in-depth analysis for the optimization of the 
modified TiO2 nanotube implants. The fuzzy inference 
system has given a relative influence of surface param-
eters like inter distance of nanotube and diameter of 
pore which facilitate the biological and mechanical be-
havior of the implants. 

AI based modelling of a HAP coated cobalt chro-
mium alloy (CoCrMo) for the enhancement of corro-
sion behavior for use in biomedical applications has 
been attempted by Coşkun & Karahan (2018). They 
have developed two distinct models using ANN and 
Genetic Programming (GP). The same has been com-
pared with the RSM model. Parameters related to the 
electrodeposition of HAP on the CoCrMo bio-implant 
were considered as inputs and the Ecorr values and cor-
rosion potential were considered as outputs for the AI 
models. Each distinct ANN and GP models were de-
veloped for each output with three input variables. In 
comparison among all the three methods, ANN models 
have given a considerable prediction of influencing pa-
rameters on the required corrosion properties. 

Nighojkar et  al. (2022) have studied the impor-
tance of metal adsorption through biomaterials in water 
contaminant systems. To improve the adsorption behav-
ior of the biomaterials, surface modifications and phys-
ical changes were required. In the effort to comprehend 
the intricate metal adsorption characteristics of bioma-
terials, ANN has been used to achieve better environ-
mental restoration and reuse of waste water. They have 
reviewed the use of hybrid ANN to determine the ther-
modynamic, kinetic and isothermal properties of multi-
ple adsorption systems. The dataset was generated with 
the experimental data of various biomaterials related to 
the contact time, concentration of metals in the bioma-
terial and its time of equilibrium. ANN models were 
developed to predict the influencing kinetic character-
istics and the uptake capability. The same way ANN 
models were developed for the adsorption isotherm and 
thermodynamics properties (range of temperature and 
adsorption nature). RSM was employed to understand 
the causes of interaction among the adsorption param-
eters (Kartal & Özveren, 2021) in comparison with the 
ANN models. An ANN based GUI for researchers who 
were not much familiar with the computational ap-
proach of attaining data related to adsorption was pro-
posed by Narayana et al. (2021). Due to convergence of 
ANN into the local minima, metaheuristic approaches 
were framed for effective optimization. Hamidian et al. 
(2019) have developed a search algorithm in combina-
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tion with ANN for the optimal removal of heavy metals 
through nanomaterials based on chitosan. 

Likewise, the prediction of self-assembled na-
no-biomaterials for effective use in biomedical appli-
cations is another regime of utilizing CI approaches. 
Kwaria et al. (2020) have attempted to predict the pro-
tein adsorption and contact angle of water on the self-as-
sembled mono layered biomaterial using ANN models. 
ANN has given a better correlation to reveal the surface 
characteristics of the biomaterial with the effective ad-
sorption rate of protein and water contact angle. The sta-
tistical (multiple linear regression) and ML (ANN) ap-
proaches were employed to study the phase behavioral 
changes of nanomaterials that have lipid base, monoole-
in and various composition of fatty acids in saturated and 
unsaturated forms (Le & Tran, 2019). The ANN models 
have an appropriate prediction of phase behavior under 
various phases with greater accuracy of the model ranges 
66% up to 96% in comparison with the linear regression 
model. This has paved a way for utilizing these models 
for suitable lipid-based delivery systems. 

The corrosion rate of magnesium in a degradable 
biomaterial can be controlled for potential use in bio-
medical applications (Willumeit et al., 2013). The ex-
perimental dataset related to the CO2 corrosion rate and 
the NaCl concentration was considered for the devel-
opment of the ANN model. The ANN has revealed the 
increase in the CO2 corrosion rate with its increasing 
concentration that too specifically ranges from 0% to 
5%. In this way, ANN helped to identify the influenc-
ing parameters that deteriorate the corrosion rate that 
typically indicates the assessment of novel biodegrad-
able materials under in-vitro conditions. The optimal 
conditions for the biofilm removal on the surface of the 
antibiofilm activity of α‑Amylase biomaterial was pre-
dicted using ANN and RSM methods through the study 
done by Lahiri et al. (2021). ANN and RSM techniques 
have predicted the optimal conditions involving the 
concentration of enzyme, time of surface treatment and 
pH level of the medium for the higher eradication of 
biofilm. This computational approach helped the medi-
cal community for the potential removal of the biofilms 
that creates various severe infections near the surround-
ing tissues of the implanted biomaterials. 

The mechanical and biological behavior of the 
surface polyvinyl pyrrolidone coated bio-ceramic nano 
magnetite / zirconia particles in a porous biomaterial used 
as a scaffold was predicted utilizing the fuzzy techniques 
(Li et al., 2022). The fuzzy logic models were developed 
to predict the fracture strength, strain rate, compressive 
strength of the porous calcium carbonate scaffolds coat-
ed with the magnetite and zirconia particles. Also it has 
helped to predict the biological parameters like the for-

mation of apatite and biodegradation rate of the porous 
biomaterial. The optimum surface topographies of bio-
materials were evaluated through an evolutionary algo-
rithm (EA) in the study done by Vasilevich et al. (2020). 
To investigate the interactions between implanted device 
coatings with tissues and cells, they employed quality of 
clinical screening of vast banks of materials with varying 
surface topographies. However, due to the huge breadth 
of the variable design space, a brute strength method can-
not be used to filter all topographical alternatives. Using 
evolutionary algorithms, they optimized surface topog-
raphies inspired by nature. They demonstrated that con-
secutive stages of material design, manufacture, fitness 
evaluation, mutation and selection optimize the design 
of biomaterials. They employed randomized mutagen-
esis and crossover to build new generations of topogra-
phies, beginning with a small number of topographically 
engineered interfaces that regulate the development of 
an osteogenic indicator.

The coating of biomaterials on the titanium al-
loys and surface modification are the avenues which 
improvise the surface characteristics of Ti alloys. Spin 
coating of biopolymers onto a  commercially pure ti-
tanium was done followed by electrochemical imped-
ance spectroscopic characterization. ANN was utilized 
to estimate the values of open circuit potential (OCP) 
in an uncoated and coated cp Ti alloy that enhances 
the corrosion resistance of the biopolymer coated cp 
Ti alloy (Kumari et al., 2018). Likewise, Kazemi et al. 
(2022) investigated the corrosion resistance of a Ti al-
loy (Ti-6Al-4V) by coating hydroxyapatite (HAP) us-
ing the ANN approach. The parameters were related 
to the sol-gel preparation of HAP that was considered 
to be inputs and the output was the measured experi-
mental Ecorr data. The trained ANN model has given 
a better prediction on the Ecorr values providing good 
corrosion resistance of Ti-6Al-4V alloy in comparison 
with the developed RSM and gene expression program-
ming models. A  non-dominated sorting genetic algo-
rithm II (NSGA II) was utilized for the optimization 
of micro hardness and roughness of β-Ti alloy surface 
(Prakash et al., 2016). The objective of the study was 
to reduce the surface roughness and increase the micro 
hardness of the surface with optimal surface machining 
parameters. The same has been achieved by generat-
ing models using the RSM approach and optimizing 
the process parameters using NSGA II. A similar study 
on improving the surface roughness of another Ti alloy 
(Ti-13Zr-13Nb) with sulfuric acid etching was done by 
Khanlou et al. (2016) using blended neuro-fuzzy infer-
ence system (ANFIS). The time of etching and tem-
perature were the influencing input parameters that im-
prove the surface roughness of the Ti-13Zr-13Nb alloy. 



Computer Methods in Materials Science� 2022, vol. 22, no. 4

A. Vinoth, S. Datta

248

ANFIS model has predicted a better correlation among 
the input parameters and surface roughness to achieve 
a good mathematical model with a Gaussian member-
ship function.

3.4. Materials for drug delivery systems

The use of CI techniques for the development of new 
biomaterials in the field of drug delivery is helping the 
medical community in numerous ways. The ANN ap-
proach was used to design and model a bio-nanocom-
posite in order to optimize the hydrogel wound dress-
ings. Water Vapor Transmission Rate (WVTR) and 
the correct Degree of Swelling Ratio (DSR) were the 
properties enhanced to overcome common concerns 
with commercial wound dressings, such as inadequate 
breathability and fluid absorption. The bio-nanocom-
posite developed by Joorabloo et al. (2019) have also 
shown enhancement in the mechanical properties and 
bio-compatibility which would help in the better heal-
ing of wounds and protection capabilities.

The ANN approach has been utilized for the for-
mulation of a  self-nanoemulsifying system for drug 
delivery based on optimizing their physicochemical 
properties (Vu et  al., 2020). The neuro-fuzzy model 
was employed to predict and correlate the In vitro–in 
vivo self-emulsifying systems for drug delivery for lip-
id based preparations (Fatouros et al., 2008). In order 
to predict the formulation impact and various process 
parameters involving the release of prednisone through 
a  multi-unit pellet method, multiple layer perceptron 
trained – back propagated ANN model was used (Man-
da et al., 2019). The prediction revealed that the pred-
nisone release was predominantly due to the concentra-
tion of crystalline cellulose in a micro scale. The ANN 
based drug delivery system has also used to predict the 
dissolution of drug (Benkő et al., 2022). Muñiz Castro 
et al. (2021) have reviewed the use of machine learning 
models that were helped to predict the role of process 
parameters for the manufacturing of 3D printed medi-
cines utilized for drug delivery. The process parameters 
for the extrusion of filament have given a  prediction 
accuracy of 93%. ANN model has yielded the best pre-
diction towards the drug release times. Likewise, a 3D 
printed drug distribution scaffold in the area of tissue 
engineering was developed using ANN. The ANN pre-
dicted model has given an enhancement in chemical, 
mechanical, repair and bone healing properties of a 3D 
printed bone scaffold for the drug release controller 
(Kondiah et  al., 2020). Similarly, a  novel tablet for 
oral disintegration was developed for pediatric patients 
using an ANN predictive model which can dissolve at 

a faster rate. This predictive ANN model has reduced 
the timeline on developing the drug in a robust manner 
with minimal material usage (Han et al., 2018).

The Fuzzy Logic (FL) approach utilized by Kumar 
& Raj (2022) helped to model and design a controller for 
the automatic delivery of drug for monitoring and regulat-
ing arterial blood pressure. This FL model has controlled 
the drug infusion rate of sodium nitroprusside in a ratio-
nal limit and the same has been validated with the exper-
imental results. This FL based controller has also shown 
an improvement in the overshoot and settling time of the 
drug. The lack of a micro pump renders the drug delivery 
method insufficient. The Fuzzy controlled micro pump 
was  presented to  determine the velocity and flow  rate 
of the drug. The simulation was based on real-time flu-
idic parameter situations. The difference between the 
modeled and measured values of flow rates was only 1 
microliter per minute and a drug speed of 0.01 milliliter 
per second (Farah & El-Sheik, 2021). A similar FL based 
approach for drug delivery was investigated by Nazari 
et al. (2021) for cancer patients during the process of im-
muno- and chemotherapy according to the ages of the 
patients. The proposed FL based algorithm has given on-
cologists the ability to prescribe treatment protocols of 
cancer patients in an optimal manner based on their ages. 
By creating two ideal nonlinear controllers, the adverse 
reactions of pharmacological therapy for cancer medi-
cation can be minimized. The associated benefits of the 
developed controllers were simultaneously optimized 
with the GA based evolutionary algorithm and modified 
with the fuzzy scheduling approach (Ghasemabad et al., 
2022). The medication seeks to lower the number of can-
cer cells by delivering a dosing regimen of drugs using 
the developed GA controller.

Microrobots were used for drug delivery in a con-
trolled manner on planning the path coverage area (Tao 
& Zhang, 2005). GA based approach was utilized for the 
enhancement in the effective path utilization of microro-
bots when compared to the conventional path planning 
techniques. GA based approach has reduced the computa-
tional time and costs and also improved the optimality of 
the path for the drug delivery. ANN-metaheuristic based 
design and optimization of synthesis of nanovectors for 
various applications in the drug delivery equipment was 
investigated by Villaseñor-Cavazos et al. (2022). ANN 
and FIS model have given a best prediction towards the 
properties of drug delivery systems like particle loading 
and size. The metaheuristic-based optimization studies 
have shown optimal nanovector’s properties. Multi-ob-
jective based GA approach was used to model and con-
trol the particle size in a closed loop for the release of 
Poly Lactic-co-Glycolic Acid (PLGA) nanoparticles into 
the drug delivery system (Baghaei et al., 2017). The op-
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timal minimal particle size was achieved through the GA 
study and the uniform distribution of the particles and its 
size was also validated through the experimental char-
acterization. Similar work was done by Rafienia et  al. 
(2010) on the controlled drug delivery of PLGA using 
ANN. The comparison of three types of feed forward 
neural networks to determine the nonlinear relationship 
among the formulation of drug loading and the release 
profiles. Out of different ANN, the Multilayer Percep-
tron (MLP) model was more consistent and efficient 
on finding the drug release profiles. As a unique class 
of carbonaceous nanomaterials, graphene has gained 
considerable interest in the domain of drug delivery. GA 
based optimization was done to search for the global op-
tima binding interaction of graphene and the drug to be 
delivered in the graphene-based drug delivery system. 
Here the fusion of quantum mechanics and GA based 
CI platform named e-graphene (Zheng et al., 2021) was 
developed to predict the feasible parameters of graphene 
based drug delivery system.

3.5. Materials for scaffolds

The importance of the fabrication of 3D objects in the 
field of bone tissue engineering (BTE) is growing. The 
computational intelligence methods of developing 
scaffolds for the growth of tissues are predominant. 
Affecting factors for BTE scaffolds are mechanical 
characteristics and porosity. Operating parameters have 
a significant impact on the mechanical characteristics 
of scaffolds. Layer thickness, delayed time in dispers-
ing every layer of powder, and printing orientations are 
the key determinants of the 3D printed scaffold’s poros-
ity and compression strength. The influence of all the 
processing parameters on the porosity and compressive 
strength was analyzed using aggregated ANN (Asadi-
-Eydivand et al., 2016). Also, Particle swarm and Pa-
reto front  optimization methods  were  utilized  to find 
the best Aggregated ANN topology and setting param-
eters for the manufacture of scaffolds with the neces-
sary porosity and compressive strength. Similarly GA 
based optimum compressive strength of the scaffold 
was achieved by Abbas et al. (n.d.) and Al-dujaili et al. 
(2017) in their studies. 

Electrospun scaffolds made out of suitable poly-
mers require high mechanical properties especially of 
the elastic modulus of the micro and nanofibers of elec-
trospun scaffolds (Vatankhah et al., 2014). The geome-
try of the fiber and composition of the polymer are the 
important factors that affect the elastic modulus. The 
ANN model helps to determine the influencing factors 
to attain an enhanced elastic modulus of the scaffold. 

This will in turn helps to enhance the required mechan-
ical properties of the targeted tissue. ANN was used by 
Reddy et al. (2021) for finding the correlation among 
the electrospun processing parameters and tensile 
strength of the electrospun polycaprolactone scaffolds 
along with their suture retention capabilities. Similarly, 
ANN aims at determining the influence of electrospun 
parameters in the alignment of poly glycolic acid and 
polycaprolactone blended nanofibers (Paskiabi et  al., 
2015). GA based optimum model has shown an en-
hancement in the elastic modulus of the scaffold made 
by a biomaterial Alginate for the soft tissue applications 
(Rezende et al., 2009). This GA model would guarantee 
the appropriate stiffness and strength of the scaffold. 
The design of a composite nanofiber was achieved by 
GA utilizing the models developed by a trained ANN 
and response surface methodology (RSM) (Haghdoost 
et al., 2022). The ANN model has given a high good-
ness value from a novel goodness function compared 
with the RSM Model. A  similar study was done by 
Shera et  al. (2018) using ANN and RSM models to 
develop a scaffold with natural composite that releases 
the drug in a diffusion controlled environment. This de-
veloped model was used to predict, regulate and screen 
the cell response on growing tissues.

Cell culture properties and the architecture of 
the scaffold was optimized using a  genetic algorithm 
(Domínguez-Díaz & Cruz-Chavez, 2015). This GA 
based model aims at improving the growing of osteo-
blasts on polymer scaffolds by controlling their pro-
cessing parameters and architecture. The results were 
compared experimentally and consistent improvement 
was observed. Semnani (2014) has proposed a GA based 
optimum model for the distribution of nanofiber in the 
structure of the scaffold. The experimental outcomes 
have given a tremendous improvement in the tensile and 
surface properties of the results. Likewise, another cru-
cial factor influencing the tissue regeneration issue is the 
stiffness of the scaffold. Nanofiber scaffolds made of cel-
lulose acetate and gelatin was optimized the responses 
using RSM and ANN. The optimal parameters for man-
ufacturing better nanofibers with a  minimal diameter 
and suitable composition of gelatin and acetic acid were 
found by Khalili et al. (2016). Heljak et al. (2017) have 
developed a GA model to design an optimum scaffold ar-
chitecture for controlling the hydrolytic degradation with 
the targeted elastic modulus of the scaffold material.

The objective of another work (Heljak et al., 2012) 
was to develop a numerical tool using GA that could aid 
in achieving the intended behavior of tissue-engineered 
scaffolds, and the findings shown were  accomplished 
effectively by utilizing a  wide range of materials for 
particular scaffold. Meta model optimization utilizing 
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GA with the data generated from the finite element 
analysis model for finding a  suitable stiffness of the 
scaffold was proposed by Paz & Monzón (2019). This 
blended optimum model has given a feasible stiffness 
of the scaffold to control the function of the cells. The 
detection of porous characteristics of microstructural 
images of scaffolds was analyzed using GA. The anal-
ysis of images by the GA model has given an agreeable 
comparison with the experimental data related to the 
distributions of pores, elongation and orientation of 
pores (Rouhollahi et al., 2021). 

In order to treat vascular diseases, implantation of 
the bio-absorbable artificial stent is much preferable. 
To spot the stents in the blood vessels effectively, vari-
ous bioresorbable scaffolds from medical images were 
utilized. A convolutional neural network (CNN) in ‘U’ 
form (Zhou et al., 2019) was developed to predict the 
identical samples of tomography images of bioresorb-
able scaffolds. This has paved a way for the doctors to 
diagnose diseases and finalize their decisions. To moni-
tor the inhibitors of MMP2 enzyme depending on L ty-
rosine scaffold, a blend of GA and partial least squares 
model was developed to along with the multiple linear 
regression model (Abbasi et  al., 2015). These devel-
oped models predicted the need of flexibility, molecular 
size, shape, and branching degree of various atoms in 
a molecule against the MMP2 enzyme in the scaffold.

3.6. Design of biomedical implants

Although designing a biomedical implant or prosthesis 
is not same as designing biomaterials, materials play 
an important role in the design of all implants. Without 
considering the materials properties or the limitations 
of materials to be used, it is not possible to design the 
implants. Newer materials with improved properties 
compel the biomedical engineers to modify the old 
design. In such a  situation, it was decided to include 
a section for designing implants in this review. The de-
sign of artificial implants using CI methods has given 
a wider dimension in the field of orthopedics. Various 
implants include joint prosthesis, dental implants, spi-
nal implants etc. CI Methods were utilized to deter-
mine the implant material characteristics to improve 
the structural and physical behavior. Zaw et al. (2009) 
have proposed the inverse approach of analyzing the 
elastic modulus of the contact tissue among the associ-
ated bones and the dental implant. They used a blend of 
neural network and reduced basis method (RBM) mod-
els under harmonic loading conditions on a dental im-
plant for analyzing the displacement of the implant and 
the structure of the bone. The RBM model was utilized 

to train the neural network model for inverse analysis 
of elastic modulus. Experimental displacement values 
were given as inputs to the trained neural network mod-
el to inversely find the true modulus of elasticity of the 
contact tissue. This RBM / neural network model has 
given better and more reliable results compared to pre-
dicted and experimental values.

An ANN approach using a feed forward network 
was used to design the gait patterns to minimize the 
contact loads in the knee prosthesis. The dataset re-
lated to various experimental gait data were collected 
from the literatures. The study was to find the suitable 
waveforms of kinematics for corresponding patterns of 
loading that is required for a suitable knee joint. ANN 
has predicted a viable kinematics to reduce the contact 
reaction forces of knee joint (Ardestani et  al., 2014). 
This CI based approach has given lot of insights for 
designing the knee joint prosthesis. ANN and GA were 
employed in a blended mode for an optimal design of 
femoral implant that has enhanced stability. Various 
design variables related to femoral stem were consid-
ered as inputs that would reduce the stability in the long 
term for the hip stem that purely rely on more relative 
motion (output) between the implant and bone (Chanda 
et al., 2015a). Several designs were made through finite 
element methods that would increase the computation-
al time and effort rather than using the CI techniques 
for the optimal design. ANN using a backpropagated 
algorithm was used to predict the relative motion be-
tween the implant and bone and the predicted NN mod-
el was used as the objective function for GA in order 
to reduce the relative motion based on various condi-
tions of loading in hip arthroplasty. The prediction on 
relative motion and optimal stem design through GA 
has given an enhanced stability in comparison with the 
finite element analysis. A similar method was used by 
the same authors (Chanda et al., 2015b) for the shape 
optimization of a  femoral implant in the multi-objec-
tive optimization using ANN and GA. 

Dental implants using functionally graded mate-
rial (FGM) have given newer dimensions to overcome 
the mechanical properties mismatch among the tailored 
and actual biomaterials. Sadollah & Bahreininejad (2011) 
has proposed a way to design an optimal FGM dental 
implant utilizing the metaheuristic algorithms like sim-
ulated annealing (SA) and GA. This GA/SA approach 
of designing the FGM dental implants have given en-
hanced mechanical properties that would guarantee 
the matching of the required properties with the actual 
bone. The GA/SA based optimal results were very well 
comparable with the literatures. Ultrasonic response of 
osseointegration phenomenon in the interface of bone 
implant was analyzed using convolutional NN (CNN). 
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The objective of the study done by Kwak et al. (2021) 
was to develop an approach to evaluate the thickness 
of the soft tissue at the interface of the bone implant 
related to the ultrasonic response analysis. The predic-
tion given by the trained CNN has given a better cor-
relation among the targeted and actual thickness of the 
soft tissue. This has shown a convincing outcome on 
the roughness value in a  micro and macro scale that 
supports the dependability of the predicted evaluation 
of the osseointegration phenomenon.

The successful use of dental implants was eval-
uated using a  combined hybrid model of predictive 
analysis classifiers (Moayeri et al., 2016) such as NN, 
K-NN, Weka J48, support vector machine (SVM) and 
naïve Bayes. The effectiveness of the suggested tech-
nique was compared to that of individual classifiers. 
According to the findings of the investigation, the com-
binative methodology can obtain better output than the 
greatest single classifier. When the combinative meth-
od was used, the sensitivity indicator was enhanced up 
to 13.3%. In order to select different bio-materials for 
the use in an orthopedic implant named bone staple, 
Fuzzy logic and Gray Relational Analysis (GRA) mod-
els were used by Sanghvi et  al. (2021). The parame-
ters that decide the material selections were mechan-
ical properties, the feasibility of manufacturing and 
biocompatibility and the materials in the dataset were 
Nitinol, Ti6Al4V and SS316L. This CI method of mate-
rial selection helped considerably in determining which 
material can be used for the application of bone staple.

To assess the changes around the hip implant after 
the surgery, a neural network was used. NN has predict-
ed the variations around the hip implant that shows the 
plan for the surgery and to find the risky regions where 
the decalcification of bone and the stability loss can be 
possible near the contact between the bone and implant 
(Szarek et al., 2012). Similarly the detecting the loos-
ening of the hip implant through the radiographs was 
predicted using CNN (Borjali et al., 2019). The deepest 
CNN has given a better prediction than the other types 
of CNNs that will show the clinicians to make a  de-
cision on the diagnostics of mechanical loosening of 
the hip implant. The same authors (Borjali et al., 2020) 
utilized deep CNN to detect the design of a damaged 
hip implant preoperatively in a matter of seconds, re-
ducing time and enhancing detection performance. 
Likewise, five types of deep CNN have been used to 
classify dental implant systems (Sukegawa et al., 2020) 
accurately through the dataset containing the various 
x-ray images of 11 implants. Kim et  al. (2020) have 
used deep CNN to classify the implant fixtures through 
images of four different types of implants. Five CNN 
models were developed and all showed a better accu-

racy of the implant fixtures. Deep CNN was examined 
by Cha et al. (2021) to detect the implants’ bone den-
sity level, apex, and top through dental periodontal ra-
diographs. The proposed automatic assistance system 
was for assessing the percentage of bone loss and the 
severity of bone resorption. Similarly, deep CNN was 
used to classify the dental implant systems through ra-
diographic and panoramic images (Lee & Jeong, 2020).

GA was used to optimize the location and geom-
etry of the implant for the transfer of tendon surgery 
in the hand (You et al., 2021). The torque of the joints 
and kinematics of the fingers were utilized to develop 
three different objective functions for finding the op-
timal parameters of the implant. GA based design of 
implants provided the 11 fold enhancement of the fin-
ger kinematics with the reduction of 0.9% of the joint 
torque in comparison with the biomechanical function. 
Likewise, a blend of ANN/GA methods helped to de-
sign a spinal implant for the fixation of pedical screw 
(Biswas et al., 2018). A FEA simulated dataset consists 
of conditions of bone and implant diameter for varying 
loads and materials was used to develop ANN meta-
models for the optimization of maximum composite 
desirability using the minimal microstrain difference 
under six different positions. Six ANN models for the 
different positions were able to show good predictions. 
The composite desirability function (D) values of the 
developed ANN models have been used for GA. The 
maximum attainable value for the D was 1. This was 
only possible if each individual’s desirability was equal 
to one, hence the “strain difference” values for all six 
situations must equal zero. This scenario couldn’t be 
concurrently obtained in all six bone conditions and lo-
cations. Optimization studies were reported using two 
different methods; firstly, for three conditions of bone 
i.e. 2.2 GPa, 2.5 GPa, and 3 GPa, five different body 
weights were evaluated to determine the maximum 
D value with minimal differences in strain for six po-
sitions and optimal diameter of implant. Secondly for 
three different weights of the body viz 420 N, 490 N, 
and 588 N, five conditions of bone were evaluated to 
determine the maximum D value and optimal diame-
ter of implant. The results suggested that the goal of 
designing patient-specific spinal implants could be par-
tially attained by altering merely the implant diameter. 
A similar method of blending ANN and GA was fol-
lowed by Roy et  al. (2018) to design patient-specific 
dental implants. The scheme of the research is given in 
Figure 17. Finite element analyses of the implant were 
done putting implants of varied diameter, length and 
porosity into the mandible of varied bone quality, as in 
Figure 18. The porosity was induced to reduce the stiff-
ness for better osseointegration, as discussed earlier.



Computer Methods in Materials Science� 2022, vol. 22, no. 4

A. Vinoth, S. Datta

252

Fig. 17. The scheme of designing porous dental implant (Roy et al., 2018)

Fig. 18. 3D models used for the simulations using FEM (Roy et al., 2018)

The generated microstrain at the bone-implant in-
terface and the maximum von Mises stress generated in 
the implant were recorded. ANN metamodels were de-
veloped to predict the microstrain as well as the stress 
at the implant. The targeted microstrain was 2500 with 
an acceptable variation between 1500 to 3000. Thus, 
the ANN metamodel outputs were combined to a de-
sirability function, which converted the output to a val-

ue between 0 and 1, as explained in Figure 19. This 
combination of the ANN model with the desirability 
function acted as the objective function for the maximi-
zation of the desirability. The maximum stress was con-
strained with the ANN model for the stress was used as 
the constraint function. The optimum design variables 
developed for different bone conditions are plotted, as 
shown in Figure 20. 
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Fig. 19. Desirability function for the microstrain at the bone-implant interface (Roy et al., 2018)
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Fig. 20. Optimal values of: a) diameter; b) porosity; c) length of the dental implant for various conditions of bone  
(Roy et al., 2018)

The identification of damaged implant was per-
formed by ANN for the preplanning in a  revision 
surgery of total hip joint. The study done by Murphy 
et  al. (2021) aimed at the construction of  a ML al-
gorithm employing active large data to recognize an 
implant from radiographic images; and to investigate 

algorithms that provide optimum accuracy in a quick 
manner. ANN models were developed to classify the 
radiographic images based on the implanted femo-
ral stem. Through the earlier surgery reports, model 
and brand of the stem was confirmed. The perfor-
mance of the ANN model was found by the accuracy 

a) b)

c)
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of the classification. This ANN models offered better 
solutions for the surgeon to classify and identify the 
failed implants in a preoperative condition. Likewise 
NN techniques were used to categorize two kinds 
of hip implants according to the relative side speed 
of the implant and three elements of every ground 
reaction force during a normal walking gait (Parisi, 
2014). The hip implants were categorized into three 
ways as Type I, II and III where Type I & II were 
based on the forces of ground reaction taken from 
different patients and Type III was based on the load 
on the bone. A multilayer perceptron NN was used to 
categorize the hip implants that have given a higher 
rate of accuracy in assessing the performance of the 
hip implants.

Knowledge based, rule based, and metaheuristic 
(GA) methods were employed to find the optimum de-
sign of patient specific implants used for ENT applica-
tions during its manufacturing (Chua & Chui, 2016). 
The manufacturing aspects of such implants consid-
ered were (i) its material properties and composition, 
and (ii) its geometry. The above-mentioned methods 
outperformed for determining the composition of the 
material in a multi-objective optimization fashion for 
the additive manufacturing of patient specific implants 
for the use in ENT applications. Similar knowledge 
imprecise CI methods using ANFIS and whale opti-
mization algorithm (Sai et al., 2020) were chosen for 
the optimization of polylactic acid implants by printing 
it through fusion deposition method.  Chatterjee et al. 
(2019) have used CI techniques (ANN/GA) to have the 
zero-strain difference adjacent to the femoral implant 
before and after implanting it. ANN meta-models gen-
erated through FEA simulation have been used as an 
objective function for the GA based optimization using 
the desirability functions of the ANN models. The opti-
mum geometry of the implant for varying bone condi-
tions were attained that act as a base to design a patient 
specific implant. Likewise FEM and computational 
approaches in tandem was deployed by few other re-
searchers (Duan et al., 2018; Madi et al., 2013; Maeda 
et al., 2005) like finding the optimal orientation of fixa-
tion screws for the fractures of the femoral neck (Özkal 
et al., 2020) and design optimization of a single piece 
ceramic dental prosthesis (Cheng et al., 2019) subject-
ed to dynamic loading using GA.

4. Concluding remarks

The review of the published literatures on the ap-
plications of ANN, FL and GA on the modeling and 
optimization of properties of biomaterials reveals 

that, like other domains of materials science and 
engineering, even though the tools have been used 
effectively by several researchers in a  sizable num-
ber of published works, the full capacity of the work 
has still not been revealed. The reasons are manifold. 
Firstly, materials scientists have a higher inclination 
for experimental work, which has started changing. 
The efficacy of using computation tools before ex-
periments through reduction of time and expenses is 
now getting revealed to wider number of scientists. 
The second reason might be an absence of sufficient 
data in the domain of biomaterials. As in this is com-
paratively smaller domain of research, where com-
plicated experimentations are also needed frequent-
ly, the generation of a database good enough, where 
complex ML tools like ANN can be applied, becomes 
difficult. The third reason might be commercial. Vol-
ume-wise, the requirement of novel materials in 
the domain of biomedical engineering is quite low 
compared to others. In such a situation there are not 
enough encouragement from the industry side for 
developing newer and better materials. For exam-
ple, while it is well-known that β-Ti alloys are better 
suited for hard tissue implant for their lower elas-
tic modulus, but still the majority of such implants 
are developed using Ti-6Al-4V, as it is a widely used 
alloy and easily available in the market. The situa-
tion is definitely changing towards a brighter future 
with more and more researchers adopting CI tools in 
their quest for new materials. In case of biomaterials 
also such changes will be evident in the forthcoming 
days. But the requirements of tailored biomaterials 
are really high, as the properties of the materials used 
for prostheses or scaffolds required for any particular 
application is quite stringent. The requirements even 
vary with person to person. In such a  situation de-
signing a material with a strict combination of prop-
erties with a lower tolerance, applications of CI tools 
are more pertinent compared to materials used in 
other engineering applications. The constraints like 
biocompatibility have also to be dealt in such designs 
quite meticulously. 

In many cases, efforts are being made to replace 
metal or ceramic prostheses by polymer or polymer 
composites-based implants. There are some expected 
advantages, such as better biocompatibility with lower 
density and price. In some cases, the implant is required 
to be anisotropic, which is difficult to achieve through 
metals or ceramics, but can be designed as per require-
ment using continuous fiber reinforced composites. For 
all such requirements, the informatics-based design of 
biomaterials with the judicious use of CI tools can pro-
vide effective solutions.
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