PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Measurement of Compound Sound Sources with Adaptive Spatial Radiation for Low-Frequency Active Noise Control Applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The proposed compound sound sources for low-frequency noise control applications are composed of dipole sources. Their spatial radiation, which is critical in the modal field of small, closed spaces, is intended to be controlled with independent driving signals of each dipole. The need for small and efficient low-frequency elementary monopole sources led to the proposed vented sub-woofer loudspeaker design with low force factor (low-Bl) drivers. The investigated sources are set up in quadrupole configurations and measured in terms of polar near field response patterns to verify the theoretical predictions. The measurement results consist of the validation of the proposed compound sound sources on the implementation of active noise control problems in the low-frequency range. Also, their small size and modular construction make them interesting for use in other applications.
Rocznik
Strony
205--212
Opis fizyczny
Bibliogr. 30 poz., fot., rys., tab.
Twórcy
  • Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, University Campus 54124 Thessaloniki, Greece
  • Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, University Campus 54124 Thessaloniki, Greece
  • Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, University Campus 54124 Thessaloniki, Greece
Bibliografia
  • 1. Aarts R. M. (2005), High-efficiency low-Bl loudspeakers, Journal of Audio Engineering Society, 53 (7/8): 579-592.
  • 2. AES56-2008 (2014), Standard on acoustics – Sound source modeling – Loudspeaker polar radiation measurements, Audio Engineering Society, New York.
  • 3. Beranek L. L. (1996), Acoustics, Acoustical Society of America, New York, USA, pp. 91-101.
  • 4. Bolton J. S., Gardner B. K., Beauvilain T. A. (1995), Sound cancellation by the use of secondary multipoles, The Journal of Acoustical Society of America, 98 (4): 2343-2362, doi: 10.1121/1.414400.
  • 5. Chan Y. J., Huang L., Lam J. (2013), Effects of secondary loudspeaker properties on broadband feedforward active duct noise control, The Journal of the Acoustical Society of America, 134 (1): 257-263, doi: 10.1121/1.4808079.
  • 6. Chen W., Pu H., Qiu X. (2010), A compound secondary source for active noise radiation control, Applied Acoustics, 71 (2): 101-106, doi: 10.1016/j.apacoust.2009.08.008.
  • 7. Concha-Barrientos M., Campbell-Lendrum D., Steenland K. (2004), Occupational noise: Assessing the burden of disease from work-related hearing impairment at national and local levels, WHO Environmental Burden of Disease Series, No. 9, WHO, Geneva.
  • 8. Czyżewski A., Kotus J., Kostek B. (2007), Determining the noise impact on hearing using psychoacoustical noise dosimeter, Archives of Acoustics, 32 (2): 215-229.
  • 9. Dickason V. (2006), Loudspeaker Design Cookbook, 7th ed., Peterborough, USA: Audio Amateur Press.
  • 10. Giouvanakis M., Kasidakis K., Sevastiadis C., Papanikolaou G. (2019), Design and construction of loudspeakers with low-Bl drivers for low-frequency active noise control applications, Proceedings of the 23rd ICA, pp. 6921-6928, Aachen, Germany, doi: 10.18154/RWTH-CONV-238865.
  • 11. Giouvanakis M., Sevastiadis C., Papanikolaou G. (2019), Low-frequency noise attenuation in a closed space using adaptive directivity control sources of a quadrupole type, Archives of Acoustics, 44 (1): 71-78, doi: 10.24425/aoa.2019.126353.
  • 12. Giouvanakis M., Sevastiadis C., Vrysis L., Papanikolaou G. (2018), Control of resonant low-frequency noise simulations in different areas of small spaces using compound sources, Proceedings of Euronoise Conference, pp. 935-941, Crete, Greece.
  • 13. Hill A. J., Hawksford M. O. J. (2010), Chameleon subwoofer arrays – Generalized theory of vectored sources in a closed acoustic space, 128th Audio Engineering Society Convention Convention, paper No. 8074, London.
  • 14. Istvan L. V., Beranek L. L. (2006), Noise and vibration control engineering-Principles and applications, 2nd ed., John Wiley & Sons, New Jersey, USA; pp. 45-150.
  • 15. Keele D. B. (1974), Low-frequency loudspeaker assessment by nearfield sound-pressure measurement, Journal of Audio Engineering Society, 22 (3): 154-162.
  • 16. Kido K. (1991), The technologies for active noise control, Journal of Acoustic Society of Japan (E), 12 (6): 245-253, doi: 10.1250/ast.12.245.
  • 17. Kotus J., Kostek B. (2008), The noise-induced harmful effect assessment based on the properties of the human hearing system, Archives of Acoustics, 33 (4): 435-440.
  • 18. Młyński R., Kozłowski E., Adamczyk J. (2014), Assessment of impulse noise hazard and the use of hearing protection devices in workplaces where forging hammers are used, Archives of Acoustics, 39 (1): 73-79, doi: 10.2478/aoa-2014-0008.
  • 19. Olson H. F. (1973), Gradient loudspeakers, Journal of Audio Engineering Society, 21 (2): 86-93.
  • 20. Pawlaczyk-Łuszczynska M., Dudarewicz A., Waszkowska M., Szymczak W., Kameduła M., Sliwinska-Kowalska M. (2004), Does low frequency noise affect human mental performance?, Archives of Acoustics, 29 (2): 205-218.
  • 21. Persson W. K. (2011), Noise and health – effects of low frequency noise and vibrations: environmental and occupational perspectives, Encyclopedia of Environmental Health, 4: 240-253.
  • 22. Qiu X., Hansen C. H. (2000), Secondary acoustic source types for active noise control in free field: monopoles or multipoles?, Journal of Sound and Vibration, 232 (5): 1005-1009, doi: 10.1006/jsvi.1999.2702.
  • 23. Russell D. A., Titlow J. P., Bemmen Y. J. (1999), Acoustic monopoles, dipoles, and quadrupoles: An experiment revisited, American Journal of Physics, 67 (8): 660-664, doi: 10.1119/1.19349.
  • 24. Shehap A. M., Shawky H. A., El-Basheer T. M. (2016), Study and assessment of low frequency noise in occupational settings, Archives of Acoustics, 41 (1): 151-160, doi: 10.1515/aoa-2016-0015.
  • 25. Small R. H. (1972), Simplified Loudspeaker Measurements at Low Frequencies, Journal of Audio Engineering Society, 20 (1): 28-33.
  • 26. Small R. H. (1973), Vented-box loudspeaker systems. Part 1: Small-signal analysis, Journal of Audio Engineering Society, 21 (5): 363-372.
  • 27. Wang S., Sun H., Pan J., Qiu X. (2018), Near-field error sensing for active directivity control of radiated sound, The Journal of the Acoustical Society of America, 144 (2): 598-607, doi: 10.1121/1.5049145.
  • 28. Wang S., Yu J., Qiu X., Pawelczyk M., Shaid A., Wang L. (2017), Active sound radiation control with secondary sources at the edge of the opening, Applied Acoustics, 117 (Part A): 173-179, doi: 10.1016/j.apacoust.2016.10.027.
  • 29. Wrona S., Pawełczyk M. (2016), Feedforward control of a light-weight device casing for active noise reduction, Archives of Acoustics, 41 (3): 499-505, doi: 10.1515/aoa-2016-0048.
  • 30. Zagubień A., Wolniewicz K. (2020), The assessment of infrasound and low frequency noise impact on the results of learning in primary school – case study, Archives of Acoustics, 45 (1): 93-102, doi: 10.24425/aoa.2020.132485.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c0252bd4-8464-4fc8-8ab6-8b1c18e1d0b9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.