Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Grade control structures (GCSs) serve as some of the most frequently used forms of river channel regulation in the Polish Carpathians. The main purpose of such structures is to reduce the gradient of the channel and strike a balance between erosion and deposition. Despite the widespread use of GCSs, not much is known about their functioning over the long term. The aim of the study was to examine a host of changes in channel morphology in a mountain river regulated using such structures. The object of the research was the lower stretch of Biały Dunajec – a Carpathian river that follows a high mountain regime. The studied river stretch was regulated 33 years ago. The history of regulation and state of the channel immediately following regulation work were assessed using available regulation documents as well as a document on the post-construction period for the studied structures. The presentday morphology of the studied river channel was investigated via a geomorphologic survey and assessment of 22 channel cross sections. Gradual changes in morphology were analyzed using orthophotomaps from different years. Research has shown that the studied river channel is shaped by all fluvial processes. In the longitudinal profile, distinct channel zones characterized by stable tendencies were identified. The upstream zone is dominated by deposition, where the channel is flooded with debris after each high water stage, and GCSs cease to function as barriers to material transport. In the middle zone, lateral erosion plays a greater role, while in the downstream zone it is downcutting and lateral erosion. The river cuts alternately into both banks, thus damaging its regulated pathway. The role of deposition increases once again in the mouth zone of the river. The studied channel is not stable, and its morphology has changed many times over the years due to discharges much lower than design discharge. The Biały Dunajec did not conform to the parameters of its regulated pathway and aims to increase its width and sinuosity. The studied channel stretch requires ongoing financial expenditures to cover repair work.
Czasopismo
Rocznik
Tom
Strony
163--176
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
- Faculty of Environmental and Power Engineering, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
Bibliografia
- 1. Boix-Fayos C., Barberá G.G. López-Bermúdez F., Castillo V.M. 2007. Effect of check-dams, reforestation and land-use changes on river channel morphology: case study of the Rogativa catchment (Murcia, Spain). Geomorphology, 91, 103–123.
- 2. Fryirs K. 2013. (Dis)connectivity in catchment sediment cascades: a fresh look at the sediment delivery problem. Earth Surface Processes and Landforms, 38, 30–46.
- 3. Galia T., Hradecký J., Škarpich V., Přibyla Z. 2016. Effect of grade-control structures at various stages of their destruction on bed sediments and local channel parameters. Geomorphology, 253, 305–317.
- 4. Galia T., Škarpich V. 2017. Response of bed sediments on the grade-control structure management of a small piedmont stream. River Research and Applications, 33, 483–494.
- 5. Gaudio R., Marion A., Bovolin V. 2010. Morphological effects of bed sills in degrading rivers. Journal of Hydraulic Research, 38(2), 89–96.
- 6. Hajdukiewicz H., Wyżga B. 2019. Aerial photobased analysis of the hydromorphological changes of a mountain river over the last six decades: the Czarny Dunajec, Polish Carpathians. Science of the Total Environment, 648, 1598–1613.
- 7. Hess M. 1965. Piętra klimatyczne w polskich Karpatach Zachodnich. Zeszyty Naukowe UJ, Prace Geograficzne, 11, 1−258 (in Polish).
- 8. Klimaszewski M. 1972. Karpaty Wewnętrzne. In: M. Klimaszewski (ed.), Geomorfologia Polski, PWN, Warszawa (in Polish).
- 9. Kondolf G.M. 1997. Hungry water: effects of dam and gravel mining on river channels. Environmental Management, 21(4), 533–551.
- 10. Korpak J. 2015. Evolution of the lower Mszanka Channel section after training using stage correction method. Infrastruktura i ekologia terenów wiejskich, 4, 1285–1302.
- 11. Korpak J. 2018. Human impact on mountains streams and rivers. In: A. Radecki-Pawlik, S. Pagliara, J. Hradecký, E. Hendrickson (eds), Open channel hydraulics, river hydraulic structures and fluvial geomorphology: for engineers, geomorphologists and physical geographers. CRC Press Taylor & Francis Group, Boca Raton, 400–435.
- 12. Korpak J., Lenar-Matyas A. 2019. Stream channel changes as a result of sudden sediment release due to check dam lowering (Polish Carpathians). Environmental Earth Sciences, 78, 404.
- 13. Korpak J., Lenar-Matyas A., Łapuszek M., Mączałowski A. 2019. Effect of riffle sequences on discharge and sediment transport in a mountain stream. Journal of Ecological Engineering, 20(3), 157–166.
- 14. Kościelniak J. 2004. Influence of river training on functioning of the Biały Dunajec River channel system. Geomorphologia Slovaca, 4(1), 62–67.
- 15. Krzemień K. 2003. The Czarny Dunajec River, Poland, as an example of human-induced development tendencies in a mountain river channel. Landform Analysis, 4, 57–64.
- 16. Lenzi M.A. 2002. Stream bed stabilization using boulder check dams that mimic step-pool morphology features in Northern Italy. Geomorphology, 45, 243–260.
- 17. Lenzi M.A., Marion A., Comiti F. 2003. Interference processes on scouring at bed sils. Earth Surface Processes and Landforms, 28, 99–110.
- 18. Logar J., Fifer Bizjak K., Kocevar M., Mikoš M., Ribicic M., Majes B. 2005. History and present state of the Slano Blato landslide. Nat. Hazards Earth Syst. Sci., 5, 447–457.
- 19. Marion A., Tregnaghi M., Tait M. 2006. Sediment supply and local scouring at bed sills in highgradient streams. Water Resorurces Research, 42, W06416.
- 20. Martín-Vide J.P., Andreatta A. 2009. Channel degradation and slope adjustment in steep streams controlled through bed sills. Earth Surface Processes and Landforms, 34, 38–47.
- 21. Piton G., Recking A. 2017. Effects of check dams on bed-load transport and steep-slope stream morphodynamics. Geomorphology, 291, 94–105.
- 22. Project No. 2220. 1969. Projekt wstępny – poszerzenie – ochrona Nowego Targu przed powodzią (in Polish).
- 23. Project No. 101. 1977. Regulacja Białego Dunajca w odcinku 0.000–3.260. Projekt techniczny (in Polish).
- 24. Project No. 4260. 1983. Porównawcza analiza techniczna uwzględniająca wykonane dotychczas roboty regulacyjne i zaistniałe zmiany w korycie Białego Dunajca w km 0.400–3.360 w stosunku do projektu technicznego. Hydroprojekt Oddział Kraków (in Polish).
- 25. Project No. 152. 1984. Ubezpieczenie brzegów pomiędzy stopniami na rzece Biały Dunajec od km 0.400 do 3.200. Projekt techniczny, Hydroprojekt Oddział Kraków (in Polish).
- 26. Projekt No. 4170. Inwentaryzacja powykonawcza korekcji stopniowej na potoku Biały Dunajec w km 0.900–3.266. Okręgowa Dyrekcja Gospodarki Wodnej w Krakowie (in Polish).
- 27. Project No. 2064. 2003. Usuwanie skutków powodzi z lipca 2001. Projekt budowlany regulacji koryta potoku Biały Dunajec w km 3.260–6.500 w miejscowości Szaflary. Hydroprojekt Oddział Kraków Sp. z o.o. (in Polish).
- 28. Radecki-Pawlik A. 2013a. The influence of a drophydraulic structure on the mountain stream channel regime – case study from the Polish Carpathians. Georeview, 23, 46–57.
- 29. Radecki-Pawlik A. 2013b. On using artificial rapid hydraulic structures (RHS) within mountain stream channels: some exploitation and hydraulic problems. In: P. Rowiński (ed.), Experimental and computational solutions of hydraulic problems. Springer, Berlin, Heidelberg, 104–115.
- 30. Wohl E. 2006. Human impacts to mountain streams. Geomorphology, 79, 217–248.
- 31. Wohl E., Lane S.N., Wilcox A.C. 2015. The science and practice of river restoration. Water Resources Research, 51(8), 5974–5997.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c024ab7e-6010-4870-bc4d-c85d8fc62b4b