Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In light of recent advancements in the literature concerning the Homotopy Analysis Method (HAM), this paper introduces a stepwise homotopy analysis methodology. This approach is employed to derive explicit series solutions for a generalized Nos´e-Hoover oscillator. Using an optimized homotopy analysis strategy, the computational efficiency of HAM is enhanced through small step intervals, significantly expediting the convergence of series solutions over an extended duration. Comparative analyses between analytical and numerical results are illustrated. The fluctuation in amplitude of the approximate analytical solutions, with respect to the control parameters of the system, is used to generate density plots. These plots serve to highlight additional dynamic features of the oscillator.
Rocznik
Tom
Strony
19--30
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
autor
- Department of Mathematics, University of Nebraska-Lincoln Lincoln, USA
autor
- Department of Mathematics, Engineering Superior Institute of Lisbon Lisbon, Portugal and Center for Mathematical Analysis, Geometry and Dynamical Systems, Department of Mathematics, Instituto Superior Tecnico, Universidade de Lisboa Lisbon, Portugal
autor
- Department of Mathematics, Engineering Superior Institute of Lisbon Lisbon, Portugal and Center for Research and Development in Mathematics and Applications (CIDMA), Department of Mathematics, University of Aveiro Aveiro, Portugal
autor
- Center for Mathematical Analysis, Geometry and Dynamical Systems, Department of Mathematics, Instituto Superior Tecnico, Universidade de Lisboa, Lisbon, Portugal and Department of Mathematics, Instituto Superior Tecnico, Universidade de Lisboa Lisbon, Portugal
- nmartins@math.tecnico.ulisboa.pt
Bibliografia
- 1. Nos´e, S. (1984). A molecular dynamics method for simulations in the canonical ensemble. Molecular Physics, 52, 2, 255-268.
- 2. Sprott, J.C., Hoover,W.G., & Hover, C.G. (2014). Heat conduction and the lack thereof, in time-reversible dynamical systems: Generalized Nos´e-Hoover oscillators with a temperature gradient. Physical Review E, 89, 042914.
- 3. Sprott, J.C. (2020). Variants of the Nos´e-Hoover oscillator. The European Physical Journal, Special Topics, 229, 963-971.
- 4. Shijian, C., Gehang, Z., Zenghui, W., & Zengqiang, C. (2022). Global structures of clew-shaped conservative chaotic flows in a class of 3D one-thermostat systems. Chaos, Solitons and Fractals, 154, 111687.
- 5. Fukuda, I. (2016). Coupled Nos´e-Hoover lattice: A set of the Nos´e-Hoover equations with different temperatures. Physics Letters A, 380, 33, 2465-2474.
- 6. Wang, L., & Yang, X. (2018). Global analysis of a generalized Nos´e-Hoover oscillator. Journal of Mathematical Analysis and Applications, 464, 1, 370-379.
- 7. Posch, H.A., Hoover, W.G., & Vesely, F.G. (1986). Canonical dynamics of the Nos´e oscillator: Stability, order, and chaos. Physical Review A, 33, 4253.
- 8. Han, Q., Deng, B., & Yang, X-S. (2022). The existence of ω-limit set for a modified Nos’e-Hoover oscillator. Discrete and Continuous Dynamical Systems Series B, 27, 7275-7300.
- 9. Zhang, X., & Liang, S. (2015). Adomian decomposition method is a special case of Lyapunov’s artificial small parameter method. Applied Mathematics Letters, 48, 177-179.
- 10. Liao, S.J. (2003). Beyond Perturbation: Introduction to the Homotopy Analysis Method. Boca Raton: Chapman and Hall / CRC Press.
- 11. Liao, S.J. (2009). Notes on the homotopy analysis method: some definitions and theorems. Communications in Nonlinear Science and Numerical Simulation, 14, 983-997.
- 12. Liao, S.J. (2010). An optimal homotopy-analysis approach for strongly nonlinear differential equations. Communications in Nonlinear Science and Numerical Simulation, 15, 2003-2016.
- 13. Liao, S.J. (2014). Advances in the Homotopy Analysis Method. World Scientific Publishing.
- 14. Yadav, S., Keshav, S., Singh, S., Singh, M., & Kumar, J. (2023). Homotopy analysis method and its convergence analysis for a nonlinear simultaneous aggregation-fragmentation model. Chaos, Solitons and Fractals, 177, 14204.
- 15. Zaheer, M., Abbas, S.Z., Huang, N., & Elmasry, Y. (2024). Analysis of buoyancy features on magneto hydrodynamic stagnation point flow of nanofluid using homotopy analysis method. International Journal of Heat and Mass Transfer, 221, 125045.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c023b33b-8079-47a3-9d0b-cd526b7329c8