Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Most of the world’s copper is produced via copper electrorefining, where nickel is the most abundant impurity in the process. Previously it has been suggested that nickel affects the adhesion of anode slimes on the anode as well as the porosity of the slime layer that forms. This paper investigates the effects of nickel, oxygen, sulphuric acid and temperature on the detachment of anode slimes from the anode surface. The detachment of particles as a function of both anode and electrolyte composition was studied on laboratory scale using a camera connected to a Raspberry Pi, and particle detection and movement analysed using TrackPy. The results revealed four different slime detachment mechanisms: cloud formation, individual particle detachment, cluster detachment and avalanche. These were found to be dependent on the electrolyte (0, 10, 20, 30 g/dm3 Ni2+ & 100, 200 g/dm3 H2SO4), with increasing nickel concentration promoting cluster detachment and increasing sulphuric acid concentration favouring detachment of individual particles. Anode composition (0.05-0.44 wt% O and 0.07-0.64 wt% Ni) was shown to affect the flow direction of anode slimes, with increasing nickel leading to more upward-flowing slimes. Typical particle movement velocities were from -0.5 to 1.0 mm/s regardless of the electrolyte and anode composition, and regardless of the operating temperature (25 °C & 60 °C) for small particles (<0.5 mm). The results also support previous findings that increasing the nickel concentration of the electrolyte leads to a more porous anode slime layer on the anode.
Słowa kluczowe
Rocznik
Tom
Strony
art. no. 186194
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor
- Department on Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University, Espoo 02150, Finland
autor
- Department on Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University, Espoo 02150, Finland
autor
- Department on Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University, Espoo 02150, Finland
Bibliografia
- ABE, S., BURROWS, B. W., ETTEL, V. A., 1980. Anode Passivation in Copper Refining. Can. Metall. Q. 19(3), 289–296. Available at: https://doi.org/10.1179/cmq.1980.19.3.289.
- ALLAN, D. B., CASWELL, T., KEIM, N. C., VAN DER WEL, C. M., VERWEIJ, R. W., 2021. soft-matter/trackpy: Trackpy v0.5.0. Zenodo. Available at: https://doi.org/10.5281/zenodo.4682814.
- ANDERSEN, T. N., PITT, C. H., LIVINGSTON, L. S., 1983. Nodulation of electrodeposited copper due to suspended particulate. J. Appl. Electrochem. 13(4), 429–438. Available at: https://doi.org/10.1007/BF00617517.
- CHEN, T. T., DUTRIZAC, J. E., 1990. A Mineralogical overview of the behavior of nickel during copper electrorefining. Metall. Trans. B. 21(2), 229–238. Available at: https://doi.org/10.1007/BF02664190.
- DUAN, H., HOU, K., LI, J., ZHU, X., 2011. Examining the technology acceptance for dismantling of waste printed circuit boards in light of recycling and environmental concerns. J. Environ. Manage. 92(3), 392–399. Available at: https://doi.org/10.1016/j.jenvman.2010.10.057.
- DUTRIZAC, J. E., CHEN, T. T. A., 1999. A mineralogical study of nodulated copper cathodes. in Proceedings of Copper 99-Cobre 99 International Conference. Vol.III Electrorefining and Electrowinning of Copper. 383–404.
- FORSÉN, O., 1985. The behaviour of nickel and antimony in oxygen-bearing copper anodes in electrolytic refining. Doctoral Dissertation, Helsinki University of Technology.
- GU, Z. H., CHEN, J., FAHIDY, T. Z., 1995. A study of anodic slime behaviour in the electrorefining of copper. Hydrometallurgy. 37(2), 149–167. Available at: https://doi.org/10.1016/0304-386X(94)00044-4.
- HANUS, D., 1987. Influence of Composition and Passivation of Anodes on Sludge Properties (Wpływ składu i pasywacji anod na właściwości szlamu). Pr. Inst. Met. Niezelaz. 16, 35–39 International Copper Study Group, 2022. The World Copper Factbook 2022.
- JARJOURA, G., KIPOUROS, G. J., 2006a. Effect of nickel on copper anode passivation in a copper sulfate solution by electrochemical impedance spectroscopy. J. Appl. Electrochem. 36(6), 691–701. Available at: https://doi.org/10.1007/s10800-006-9130-2.
- JARJOURA, G., KIPOUROS, G. J., 2006b. Electrochemical studies on the effect of nickel on copper anode passivation in a copper sulphate solution. Can. Metall. Q. 45(3), 283–294. Available at: https://doi.org/10.1179/cmq.2006.45.3.283.
- KALLIOMÄKI, T., AJI, A. T., RINTALA, L., AROMAA, J., LUNDSTRÖM, M., 2017. Models for viscosity and density of copper electrorefining electrolytes. Physicochem. Probl. Miner. Process. 53(2), 1023–1037. Available at: https://doi.org/10.5277/ppmp170227.
- KALLIOMÄKI, T., AJI, A. T., AROMAA, J., LUNDSTRÖM, M., 2019. Settling properties of copper electrorefining anode slimes. in Proceedings of the 58th Annual Conference of Metallurgists (COM) Hosting the 10th International Copper Conference 2019.
- LING, X., GU, Z. H., FAHIDY, T. Z., 1994a. Anode slime behaviour in a laboratory-scale copper electrorefining process. Can. J. Chem. Eng. 72, 683–694.Available at: https://doi.org/10.1002/cjce.5450720418.
- LING, X., GU, Z. H., FAHIDY, T. Z., 1994b. Effect of operating conditions on anode passivation in the electrorefining of copper. J. Appl. Electrochem. 24(11), 1109–1115. Available at: https://doi.org/10.1007/BF00241308.
- MICHAUX, S.P., 2021. The Mining of Minerals and the Limits to Growth. 16/2021. Geological Survey of Finland. Available at: https://tupa.gtk.fi/raportti/arkisto/16_2021.pdf (Accessed: 27 January 2023).
- MIIKKI, K. AND KARAKOC, A., 2020. kmiikki/rpi-camera: RPI-camera-software-suite. Zenodo. Available at: https://doi.org/10.5281/zenodo.4275964.
- MOATS, M., FILZWIESER, A., DAVENPORT, W. G., ABEL, R., WANG, S., 2022. Global Survey of Copper Electrorefining: 2022 World Tankhouse Operating Data. in Proceedings of Copper - Cobre 2022 International Conference vol. 5: Electrometallurgy, 64-74.
- MOATS, M. S., 1998. Electrochemical Characterization of Anode Passivation Mechanism in Copper Electrorefining. Doctoral Dissertation, The University of Arizona.
- OGAWA, K., 2016. Copper Electrowinning and Nickel Recovery from Black Copper Containing High Levels of Impurities from the Smelting Process of Complex Recycling Materials. in Proceedings of the International Copper Conference 2016.
- SAHLMAN, M., AROMAA, J., LUNDSTRÖM, M., 2021. Copper Cathode Contamination by Nickel in Copper Electrorefining. Metals 11, 1758. Available at: https://doi.org/10.3390/met11111758.
- SAHLMAN, M., AROMAA, J., LUNDSTRÖM, M., 2022. The effect of electrolytic nickel on the anode slime detachment from the anode surface. in Proceedings of Copper - Cobre 2022 International Conference vol. 5: Electrometallurgy, 85-97.
- TETSUKA, D., OKAMOTO, H., 2019. Effect of Antimony, Nickel and Sulfuric Acid in Copper Electrorefining. in Proceedings of the 58th Annual Conference of Metallurgists (COM) Hosting the 10th International Copper Conference 2019.
- ZENG, W., FREE, M. L., WERNER, J., WANG, S., 2015a. Simulation and Validation Studies of Impurity Particle Behavior in Copper Electrorefining. J. Electrochem. Soc. 162, E338. Available at: https://doi.org/10.1149/2.0561514jes.
- ZENG, W., FREE, M. L., WANG, S., 2015c. Studies of Anode Slime Sintering/Coalescence and Its Effects on Anode Slime Adhesion and Cathode Purity in Copper Electrorefining. J. Electrochem. Soc. 163, E14. Available at: https://doi.org/10.1149/2.0681602jes.
- ZENG, W., WANG, S., FREE, M. L., 2016a. Experimental and Simulation Studies of Electrolyte Flow and Slime Particle Transport in a Pilot Scale Copper Electrorefining Cell. J. Electrochem. Soc. 163, E111. Available at: https://doi.org/10.1149/2.0181605jes.
- ZENG, W., WANG, S., FREE, M. L., 2016b. Experimental Studies of the Effects of Anode Composition and Process Parameters on Anode Slime Adhesion and Cathode Copper Purity by Performing Copper Electrorefining in a Pilot-Scale Cell. Metall. Mater. Trans. B 47(5), 3178–3191. Available at: https://doi.org/10.1007/s11663-016-0736-4.
- ZENG, W., WANG, S., FREE, M. L., 2017. Two-Phase Flow Modeling of Copper Electrorefining Involving Impurity Particles. J. Electrochem. Soc. 164(9), E233. Available at: https://doi.org/10.1149/2.0401709jes.
- ZENG, W., WERNER, J., FREE, M. L., 2015b. Experimental studies on impurity particle behavior in electrolyte and the associated distribution on the cathode in the process of copper electrorefining. Hydrometallurgy. 156, 232–238. Available at: https://doi.org/10.1016/j.hydromet.2015.06.005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c023162b-ff0a-4f82-822c-e8b74db98ceb