PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Metody usuwania HCL z frakcji ciekłej powstałej podczas pirolizy odpadów zawierających PVC

Identyfikatory
Warianty tytułu
EN
HCL removal from oils obtained during PVC pyrolysis
Języki publikacji
PL
Abstrakty
PL
W artykule opisano metody zagospodarowania odpadów zgodne z hierarchią postępowania z odpadami oraz gospodarką obiegu zamkniętego. Scharakteryzowano proces pirolizy. Przedstawiono podsumowanie badań mających na celu otrzymanie oleju z pirolizy odpadów zawierających PVC o właściwościach pozwalających na jego gospodarcze wykorzystanie. Analiza obejmuje zarówno procesy stosowane podczas pirolizy jak i metody usuwania HCl z otrzymanego oleju.
EN
The paper includes the information on the waste management in accordance with the waste hierarchy as well as the circular economy. Pyrolysis process was described. A summary of the research aimed at obtaining oil from the pyrolysis of PVC-containing waste with properties that allow its economic use is presented. The analysis covers both processes used during pyrolysis and methods for removing HCl from the obtained oil.
Rocznik
Strony
17--19
Opis fizyczny
Bibliogr 29 poz.
Twórcy
  • Sieć Badawcza Łukasiewicz-Instytut Metali Nieżelaznych w Gliwicach
  • Sieć Badawcza Łukasiewicz-Instytut Metali Nieżelaznych w Gliwicach
  • Sieć Badawcza Łukasiewicz-Instytut Metali Nieżelaznych w Gliwicach
Bibliografia
  • [1] Klejnowska, Katarzyna; Pikoń, Krzysztof; Ścierski, Waldemar; Zajączkowski, Andrzej, “Termiczny rozkład wielomateriałowych odpadowych opakowań po produktach farmaceutycznych,” Przem. Chem., vol. 98, no. 9, pp. 1414–1416, 2019.
  • [2] Główny Urząd Statystyczny, “Produkcja wyrobów przemysłowych w 2018 roku,” 2019.
  • [3] PlasticsEurope, “Plastics – the Facts, ”Plast.–Facts 2018, p.38, 2018.
  • [4] K. Kaiser, M. Schmid, and M. Schlummer, “Recycling of polymer-based multilayer packaging: A review,” Recycling, vol. 3, no. 1, 2018.
  • [5] W. Domańska, “Ochrona Środowiska 2019,” Warszawa, 2019.
  • [6] R. Geyer, J. R. Jambeck, and K. L. Law, “Production, use, and fate of all plastics ever made,” Sci. Adv., vol. 3, no. 7, pp. 25–29, 2017.
  • [7] L. Shen and E. Worrell, Plastic Recycling. Elsevier Inc., 2014.
  • [8] K. Borkowski, “Plastics industry – manufacturing materials for 21st century,” Mechanik, no. 4, pp. 278–282, 2015.
  • [9] P. Lettieri and S. M. Al-Salem, “Thermochemical Treatment of Plas- tic Solid Waste,” Waste, pp. 233–242, Jan. 2011.
  • [10] S. Nadziakiewicz, Jan; Wacławiak, Krzysztof; Stelmach, Procesy termiczne utylizacji odpadów. Wydawnictwo Politechniki Śląskiej, 2012.
  • [11] J. P. B. Karama et al., “Modeling the emission of hydrogen chloride and free chlorine from the thermal treatment of polyvinyl chloride(PVC-) based plastic materials,” J. Anal. Appl. Pyrolysis, vol. 101, pp. 209–214, May 2013.
  • [12] A. Castro, D. Soares, C. Vilarinho, and F. Castro, “Kinetics of thermal de-chlorination of PVC under pyrolytic conditions,” Waste Manag., vol. 32, no. 5, pp. 847–851, May 2012.
  • [13] A. López, I. de Marco, B. M. Caballero, M. F. Laresgoiti, and A. Adrados, “Dechlorination of fuels in pyrolysis of PVC containing plastic wastes,” Fuel Process. Technol., vol. 92, no. 2, pp. 253–260, Feb. 2011.
  • [14] Y. Qi et al., “A novel treatment method of PVC-medical waste by near-critical methanol: Dechlorination and additives recovery,” Waste Manag., vol. 80, pp. 1–9, Oct. 2018.
  • [15] Q. Cao, G. Yuan, L. Yin, D. Chen, P. He, and H. Wang,“ Morphological characteristics of polyvinyl chloride (PVC) dechlorination during pyrolysis process: Influence of PVC content and heating rate,” Waste Manag., vol. 58, pp. 241–249, Dec. 2016.
  • [16] A. Lopez-Urionabarrenechea, I. de Marco, B. M. Caballero, M. F. Laresgoiti, and A. Adrados, “Upgrading of chlorinated oils coming from pyrolysis of plastic waste,” Fuel Process. Technol., vol. 137, pp. 229–239, Sep. 2015.
  • [17] K. Klejnowska, K. Pikoń, W. Ścierski, K. Skutil, and M. Bogacka, “Influence of temperature on the composition and calorific value of gases produced during the pyrolysis of waste pharmaceutical blisters,” Appl. Sci., 2020.
  • [18] S. Salhofer, Source Separation and Recycling, vol. 63. 2018.
  • [19] K.-B. Park, S.-J. Oh, G. Begum, and J.-S.Kim, “Production of clean oil with low levels of chlorine and olefins in a continuous two-stage pyrolysis of a mixture of waste low-density polyethylene and polyvinyl chloride,” Energy, vol. 157, pp. 402–411, Aug. 2018.
  • [20] A. López, I. deMarco, B. M. Caballero, M. F. Laresgoiti, A. Adrados, and A. Aranzabal, “Catalytic pyrolysis of plastic wastes with two different types of catalysts: ZSM-5 zeolite and Red Mud,” Appl. Catal. B Environ., 2011.
  • [21] O. H. Ahmed, M. Altarawneh, Z. T. Jiang, M. Al-Harahsheh, and B. Z. Dlugogorski, “Reactions of products from thermal degradation of PVC with nanoclusters of Α-Fe2O3 (hematite),” Chem. Eng. J., 2017.
  • [22] A. Veksha, A. Giannis, W. DaOh, V. W.C. Chang, and G.Lisak, “Up- grading of non-condensable pyrolysis gas from mixed plastics through catalytic decomposition and dechlorination,” Fuel Process. Technol., 2018.
  • [23] J. Yanik, M. A. Uddin, K. Ikeuchi, and Y. Sakata, “The catalytic effect of Red Mud on the degradation of poly (vinyl chloride) containing polymer mixture into fuel oil,” Polym. Degrad. Stab., 2001.
  • [24] G. Liu, Y. Liao, and X. Ma, “Thermal behavior of vehicle plastic blends contained acrylonitrile-butadiene-styrene (ABS) in pyrolysis using TG-FTIR,” Waste Manag., 2017.
  • [25] N. Lingaiah, M. Azhar Uddin, A. Muto, Y. Sakata, T. Imai, and K. Murata, “Catalytic dechlorination of chloroorganic compounds from PVC-containing mixed plastic-derived oil,” Appl. Catal. A Gen., 2001.
  • [26] N. Miskolczi, F. Buyong, A. Angyal, P. T. Williams, and L. Bartha, “Two stages catalytic pyrolysis of refuse derived fuel: Production of biofuel via syncrude,” Bioresour. Technol., 2010.
  • [27] B. Fekhar, L. Gombor, and N. Miskolczi, “Pyrolysis of chlorine contaminated municipal plastic waste: In-situ upgrading of pyrolysis oils by Ni/ZSM-5, Ni/SAPO-11, red mud and Ca(OH)2 containing catalysts,” J. Energy Inst., Oct. 2018.
  • [28] N. Lingaiah, M. A. Uddin, A. Muto, T. Imai, and Y. Sakata, “Removal of organic chlorine compounds by catalytic dehydrochlorination for the refinement of municipal waste plastic derived oil,” Fuel, 2001.
  • [29] Y. Masuda, T. Uda, O. Terakado, and M. Hirasawa, “Pyrolys is study of poly(vinyl chloride)–metal oxide mixtures: Quantitative product analysis and the chlorine fixing ability of metal oxides,” J. Anal. Appl. Pyrolysis, vol. 77, no. 2, pp. 159–168, Oct. 2006.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c0227863-03b9-4f20-abbe-1794f57c94bc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.