PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Techniques of feature extraction from temperature modulated semiconductor gas sensors – a review

Identyfikatory
Warianty tytułu
PL
Techniki ekstrakcji cech z dynamicznej rezystancyjnej odpowiedzi modulowanego temperaturowo półprzewodnikowego czujnika gazu
Języki publikacji
EN
Abstrakty
EN
Metal oxide semiconductor gas sensors are widely used in monitoring of the air pollution. Temperature modulation has been proven to be an efficient technique to improve the performance of those sensors. Changing the temperature of the semiconductor surface can lead to increase in the amount of the information from the sensor response. However, the nonlinear dynamic response is very complex and impedes the analysis. Therefore, the utilization of certain data analysis techniques, including feature extraction methods is required. In this article different techniques of extracting features from temperature modulated sensor response are presented.
PL
Czujniki półprzewodnikowe są powszechnie wykorzystywane w monitorowaniu poziomu zanieczyszczenia powietrza. Jednym ze sposobów poprawy ich właściwości jest zastosowanie techniki modulacji temperatury. Pozwala to między innymi zwiększyć ilość informacji uzyskiwanej z nieliniowej odpowiedzi czujnika. Do tego celu stosuje się odpowiednie metody ekstrakcji cech i analizy danych. W artykule przedstawiono wybrane techniki ekstrakcji cech z odpowiedzi temperaturowo modulowanych półprzewodnikowych czujników gazów.
Twórcy
autor
  • Gdansk University of Technology, Faculty of Electronics, Telecommunications and Informatics, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
  • Gdansk University of Technology, Faculty of Electronics, Telecommunications and Informatics, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
autor
  • Gdansk University of Technology, Faculty of Electronics, Telecommunications and Informatics, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
autor
  • Gdansk University of Technology, Faculty of Electronics, Telecommunications and Informatics, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
Bibliografia
  • [1] G. Korotcenkov and B. K. Cho, “Engineering approaches for the improvement of conductometric gas sensor parameters,” Sensors Actuators B Chem., vol. 188, pp. 709–728, Nov. 2013.
  • [2] A. P. Lee and B. J. Reedy, “Temperature modulation in semiconductor gas sensing,” Sensors Actuators B Chem., vol. 60, no. 1, pp. 35–42, 1999.
  • [3] K. Persaud and G. Dodd, “Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose,” Nature, vol. 299, no. 5881, pp. 352–5, 1982.
  • [4] G. Jasinski, P. Kalinowski, and Ł. Woźniak, “An electronic nose for quantitative determination of gas concentrations,” vol. 10161, pp. 1–6, 2016.
  • [5] I. Morsi, “Electronic noses for monitoring environmental pollution and building regression model,” 2008 34th Annu. Conf. IEEE Ind. Electron., pp. 1730–1735, 2008.
  • [6] W. An and C. Y. Yang, “Review on Temperature Modulation Technology of Gas Sensors,” Appl. Mech. Mater., vol. 143–144, pp. 567–571, Dec. 2011.
  • [7] R. Jaisutti and T. Osotchan, “Transient signal analysis of step temperature modulation in metal oxide sensor response,” 2008 Int. Symp. Intell. Signal Process. Commun. Syst., no. I, pp. 1–4, Feb. 2009.
  • [8] M. W. Sears, K. Colbow, and F. Consadori, “General characteristics of thermally cycled tin oxide gas sensors,” Semicond. Sci. Technol., vol. 4, pp. 351–359, 1989.
  • [9] N. Yamazoe and N. Miura, “Some basic aspects of semiconductor gas sensors,” in Chemical sensor technology, vol. 4, 1992, pp. 19–42.
  • [10] H. Eicker, “Carbon monoxide detection using semiconductors - with temp variation giving long term stability and methane detection, DE 2313413 A1, 1973.,” DE 2313413 A1, 1973.
  • [11] S. Nakata and N. Ojima, “Detection of a sample gas in the presence of an interferant gas based on a nonlinear dynamic response,” Sensors Actuators B Chem., vol. 56, no. 1–2, pp. 79–84, Jul. 1999.
  • [12] S. Nakata, E. Ozaki, and N. Ojima, “Gas sensing based on the dynamic nonlinear responses of a semiconductor gas sensor: dependence on the range and frequency of a cyclic temperature change,” Anal. Chim. Acta, vol. 361, no. 1–2, pp. 93–100, Mar. 1998.
  • [13] S. Nakata, S. Akakabe, M. Nakasuji, and K. Yoshikawa, “Gas Sensing Based on a Nonlinear Response: Discrimination between Hydrocarbons and Quantification of Individual Components in a Gas Mixture.,” Anal. Chem., vol. 68, no. 13, pp. 2067–72, Jul. 1996.
  • [14] B. Yea, T. Osaki, K. Sugahara, and R. Konishi, “The concentration-estimation of inflammable gases with a semiconductor gas sensor utilizing neural networks and fuzzy inference,” Sensors Actuators B Chem., vol. 41, no. 1–3, pp. 121–129, 1997.
  • [15] P. Gwiżdż, A. Brudnik, and K. Zakrzewska, “Hydrogen Detection With a Gas Sensor Array – Processing and Recognition of Dynamic Responses Using Neural Networks,” Metrol. Meas. Syst., vol. 22, no. 1, pp. 3–12, Jan. 2015.
  • [16] Ł. Woźniak, P. Kalinowski, G. Jasiński, and P. Jasiński, “Determination of chlorine concentration using single temperature modulated semiconductor gas sensor,” vol. 10161, p. 101610U, 2016.
  • [17] R. Ionescu and E. Llobet, “Wavelet transform-based fast feature extraction from temperature modulated semiconductor gas sensors,” Sensors Actuators B Chem., vol. 81, no. 2–3, pp. 289–295, Jan. 2002.
  • [18] H. Ding, H. Ge, and J. Liu, “High performance of gas identification by wavelet transform-based fast feature extraction from temperature modulated semiconductor gas sensors,” Sensors Actuators B Chem., vol. 107, no. 2, pp. 749–755, Jun. 2005.
  • [19] A. Amini, M. A. Bagheri, and G. A. Montazer, “Improving gas identification accuracy of a temperature-modulated gas sensor using an ensemble of classifiers,” Sensors Actuators, B Chem., vol. 187, pp. 241–246, 2013.
  • [20] A. Gramm and A. Schütze, “High performance solvent vapor identification with a two sensor array using temperature cycling and pattern classification,” Sensors Actuators, B Chem., vol. 95, no. 1–3, pp. 58–65, 2003.
  • [21] J. Fonollosa, S. Sheik, R. Huerta, and S. Marco, “Reservoir computing compensates slow response of chemosensor arrays exposed to fast varying gas concentrations in continuous monitoring,” Sensors Actuators, B Chem., vol. 215, pp. 618–629, 2015.
  • [22] P. Kalinowski, L. Wozniak, G. Jasinski, and P. Jasinski, “Time window based features extraction from temperature modulated gas sensors for prediction of ammonia concentration,” IEEE Xplore, 2018.
  • [23] M. Dominguez-Pumar, L. Kowalski, R. Calavia, and E. Llobet, “Smart control of chemical gas sensors for the reduction of their time response,” Sensors Actuators, B Chem., vol. 229, pp. 1–6, 2016.
  • [24] R. Gosangi and R. Gutierrez-Osuna, “Active temperature modulation of metal-oxide sensors for quantitative analysis of gas mixtures,” Sensors Actuators B Chem., vol. 185, pp. 201–210, Aug. 2013.
  • [25] E. Martinelli, D. Polese, A. Catini, A. D’Amico, and C. Di Natale, “Self-adapted temperature modulation in metal-oxide semiconductor gas sensors,” Sensors Actuators B Chem., vol. 161, no. 1, pp. 534–541, Jan. 2012.
  • [26] F. Herrero-Carrón, D. J. Yáñez, F. D. B. Rodríguez, and P. Varona, “An active, inverse temperature modulation strategy for single sensor odorant classification,” Sensors Actuators B Chem., vol. 206, pp. 555–563, Jan. 2015.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c01efc19-75f4-4dad-8dac-995b8ceb7013
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.